This document gives pertinent information concerning the reissuance of the VPDES Permit listed below. This permit is being processed as a Minor, Municipal permit. The discharge results from the operation of a 0.0053 MGD wastewater treatment plant. This permit action consists of updating the proposed effluent limits to reflect the current Virginia Water Quality Standards (effective January 6, 2011) and updating permit language as appropriate. The effluent limitations and special conditions contained in this permit will maintain the Water Quality Standards of 9VAC25-260 et seq.

1.	Facility Name and Mailing Address:	Berkeley Elementary School 8020 River Stone Drive Fredericksburg, VA 22407	SIC Code :	4952 WWTP
	Facility Location:	5979 Partlow Road Spotsylvania, VA 22553	County:	Spotsylvania
	Facility Contact Name: Facility Title:	Doug Crooks Division Director WWTP	Telephone Number:	540-507-7362
	Facility E-mail Address:	dcrooks@spotsylvania.va.us		
2.	Permit No.:	VA0061301	Expiration Date of previous permit:	June 4, 2012
	Other VPDES Permits associ	ated with this facility:	N/A	
	Other Permits associated with	n this facility:	N/A	
	E2/E3/E4 Status:	N/A		
3.	Owner Name:	Spotsylvania County School	Board	
	Owner Contact/Title:	S. Scott Baker, Superintende		540-834-2500
	Owner E-mail Address:	sbaker@scs.k.12.va.us	•	
4.	Application Complete Date:	December 21, 2011		
	Permit Drafted By:	Joan C. Crowther	Date Drafted:	9/4/12
	Draft Permit Reviewed By:	Alison Thompson	Date Reviewed:	9/7/12
	WPM Review By:	Bryant Thomas	Date Reviewed:	N/A
	Public Comment Period:	Start Date: September 28,	2012 End Date:	October 29, 2012
5.	Receiving Waters Informatio	n: See Attachment 1 for the Fl	ow Frequency Determination	on
	Receiving Stream Name:	Mat River, UT	Stream Code:	8-XDP
	Drainage Area at Outfall:	0.05 sq.mi.	River Mile:	1.06
	Stream Basin:	York River	Subbasin:	None
,	Section:	3	Stream Class:	III
	Special Standards:	None	Waterbody ID:	VAN-F18R
	7Q10 Low Flow:	0.0 MGD	7Q10 High Flow:	0.0 MGD
	1Q10 Low Flow:	0.0 MGD	1Q10 High Flow:	0.0 MGD
	30Q10 Low Flow:	0.0 MGD	30Q10 High Flow:	0.0 MGD
	Harmonic Mean Flow:	0.0 MGD	30Q5 Flow:	0.0 MGD
6.	Statutory or Regulatory Basi	is for Special Conditions and E	Effluent Limitations:	
	✓ State Water Control I	Law	EPA Guide	elines
	✓ Clean Water Act		✓ Water Qua	lity Standards
	✓ VPDES Permit Regu	lation	Other	
	/ EDITIONED I	.*		

✓ EPA NPDES Regulation

7.	Licer	nsed Operator Requ	irem	ents: Class III		
3.	Relia	bility Class: Class	II			
).	Perm	it Characterization:	•			
		Private		Effluent Limited		Possible Interstate Effect
		Federal	√	Water Quality Limited		Compliance Schedule Required
		State		Toxics Monitoring Program Required		Interim Limits in Permit
	√	POTW		Pretreatment Program Required	***	Interim Limits in Other Document
		TMDL				
		-				

10. Wastewater Sources and Treatment Description:

This facility currently serves one elementary school with a current population size of 375 students. The wastewater treatment plant consists of a grease trap, three septic tanks, bar screen, aeration basin, secondary clarifier, chlorination (soda ash is added here every few days for pH control), dechlorination, and cascade aeration. Outfall 001 is located approximately 350 feet south of the facility on an unnamed tributary of the Mat River (38°07'7"/77°36'52").

Because this facility treats the wastewater from a school, the discharge has been determined to be a periodic discharge. A "periodic discharge" is one that happens regularly, but is not continuous all year.

See Attachment 2 for a facility schematic/diagram.

	$_{ m T}$	ABLE 1 – Outfall Des	cription	
Outfall Number	Discharge Sources	Treatment	Design Flow(s)	Outfall Latitude and Longitude
001	Domestic Wastewater	See Item 10 above.	0.0053 MGD	38°07'7" N 77°36'52" W

The rest of this page is intentionally left blank.

USGS Topographic Map name - Ladysmith, DEQ Quad # 170D

11. Sludge Treatment and Disposal Methods:

The waste activated sludge is trucked to the Spotsylvania County's Massaponax Wastewater Treatment Plant (VA0025658) for final processing.

12. DEQ Monitoring Stations in Vicinity of Discharge:

TABLE 2 DEQ Ambient Water Quality Monitoring Station within 2 mile radius of Berkeley Elementary							
DEQ AWQM Station No.	Description						
8-MAT001.87	Located at the Route 647 Bridge crossing, approximately 1.86 miles downstream of Outfall 001						
8-TAR002.40	Located on the Ta River at the Route 738 (Partlow Road) Bridge crossing. This ambient station is located on a separate stream that is not associated with the outfall but is located within the 2-mile radius of the outfall.						

13. Material Storage:

TABLE 3 - Material Storage								
Materials Description	Volume Stored	Spill/Stormwater Prevention Measures						
Chlorination Tablets	1 – 5 gallon bucket	Inside locked storage building within fenced area.						
Dechlorination Tablets	1 – 5 gallon bucket	Inside locked storage building within fenced area.						
Soda Ash	1 – 30 gal. trash can	Inside locked storage building within fenced area.						

14. Site Inspection:

Performed by Ms. Wilamena Harback on May 15, 2008. (See Attachment 3).

15. Receiving Stream Water Quality and Water Quality Standards:

a) Ambient Water Quality Data

This facility discharges into an unnamed tributary to the Mat River. The nearest downstream DEQ monitoring station is 8-MAT001.87 on the Mat River, located at the Route 647 Bridge crossing (Blaydes Corner Road), approximately 1.86 miles downstream of Outfall 001. The following is the water quality summary for this segment of the Mat River, as taken from the Draft 2012 Integrated Assessment*:

The aquatic life and recreation uses are fully supporting. The wildlife and fish consumption uses were not assessed.

b) 303(d) Listed Stream Segments and Total Maximum Daily Loads (TMDLs)

Impairment Information in the Draft 2012 Integrated Report*										
Waterbody Name	Impaired Use	Cause	Distance From Outfall	TMDL completed	WLA	Basis for WLA	TMDL Schedule			
Matta River	Aquatic Life	Benthic Macroinvertebrates	4.0 miles	No	N/A	N/A	2020			
	Recreation	E. coli	5.2 miles	No	N/A	N/A	2016			

^{*}The Draft 2012 Integrated Report (IR) has been through the public comment period and reviewed by EPA. The 2012 IR is currently being finalized and prepared for release.

The full planning statement dated August 29, 2012 is found in Attachment 4.

c) Receiving Stream Water Quality Criteria

Part IX of 9VAC25-260(360-550) designates classes and special standards applicable to defined Virginia river basins and sections. The receiving stream unnamed tributary to the Mat River is located within Section 3 of the York River Basin, and classified as a Class III water.

At all times, Class III waters must achieve a dissolved oxygen (D.O.) of 4.0 mg/L or greater, a daily average D.O. of 5.0 mg/L or greater, a temperature that does not exceed 32°C, and maintain a pH of 6.0-9.0 standard units (S.U.).

The Freshwater Water Quality Criteria/Wasteload Allocation Analysis dated August 29, 2012 (Attachment 5) details water quality criteria applicable to the receiving stream. The 90th percentile pH and temperature data from January 2009 to July 2012 was used to establish the applicable water quality criteria for the receiving stream can be found in Attachment 6.

Ammonia:

The 7Q10 and 1Q10 of the receiving stream are 0.0 MGD. In cases such as this, effluent pH and temperature data may be used to establish the ammonia water quality standard. Because this discharge is "periodic" only the acute criteria applies to this discharge.

Staff has re-evaluated the effluent data for pH and temperature and finds that there was significant difference in the pH and temperature data from the data used to establish ammonia criteria and subsequent effluent limits in the previous permit. For this permit reissuance, effluent pH and temperature from January 2009 to July 2012 was reviewed. The 90th percentile value for pH and temperature was 7.68 SU and 22.2°C, respectively. The resulting ammonia water quality criteria using these pH and temperature values are 14.9 mg/L for acute and 2.23 mg/L for chronic.

The previous two permit reissuances used 90th percentile pH value of 8.3 SU and 90th percentile temperature value of 20°C to calculation the ammonia criteria. The resulting acute ammonia water quality criteria using these values was 2.92 mg/L. This effluent pH and temperature data can be found in Attachment 7.

Metals Criteria:

The Water Quality Criteria for some metals are dependent on the receiving stream's hardness (expressed as mg/L calcium carbonate). There is no hardness data for this facility. Staff guidance suggests using a default hardness value of 50 mg/L CaCO₃ for streams east of the Blue Ridge. The hardness-dependent metals criteria in Attachment 5 are based on this default value.

d) Receiving Stream Special Standards

The State Water Control Board's Water Quality Standards, River Basin Section Tables (9VAC25-260-360, 370 and 380) designates the river basins, sections, classes, and special standards for surface waters of the Commonwealth of Virginia. The receiving stream, Mat River, UT, is located within Section 3 of the York River Basin. There are no special standards designed for this section.

e) Threatened or Endangered Species

The Virginia DGIF Fish and Wildlife Information System Database was searched on August 22, 2012 for records to determine if there are threatened or endangered species in the vicinity of the discharge. No threatened or endangered species were identified. See Attachment 8.

16. Antidegradation (9VAC25-260-30):

All state surface waters are provided one of three levels of antidegradation protection. For Tier 1 or existing use protection, existing uses of the water body and the water quality to protect these uses must be maintained. Tier 2 water bodies have water quality that is better than the water quality standards. Significant lowering of the water quality of Tier 2 waters is not allowed without an evaluation of the economic and social impacts. Tier 3 water bodies are exceptional waters and are so designated by regulatory amendment. The antidegradation policy prohibits new or expanded discharges into exceptional waters.

The receiving stream has been classified as Tier 1. The critical flows for the stream are zero and at times the stream flow is comprised of only effluent. It is staff's best professional judgment that such streams are Tier 1. Permit limits proposed have been established by determining wasteload allocations which will result in attaining and/or maintaining all water quality criteria which apply to the receiving stream, including narrative criteria. These wasteload allocations will provide for the protection and maintenance of all existing uses.

17. Effluent Screening, Wasteload Allocation, and Effluent Limitation Development:

To determine water quality-based effluent limitations for a discharge, the suitability of data must first be determined. Data is suitable for analysis if one or more representative data points is equal to or above the quantification level ("QL") and the data represent the exact pollutant being evaluated.

Next, the appropriate Water Quality Standards (WQS) are determined for the pollutants in the effluent. Then, the Wasteload Allocations (WLA) are calculated. In this case since the critical flows 7Q10 and 1Q10 have been determined to be zero, the WLA's are equal to the WQS. The WLA values are then compared with available effluent data to determine the need for effluent limitations. Effluent limitations are needed if the 97th percentile of the daily effluent concentration values is greater than the acute wasteload allocation or if the 97th percentile of the four-day average effluent concentration values is greater than the chronic wasteload allocation. Effluent limitations are based on the most limiting WLA, the required sampling frequency, and statistical characteristics of the effluent data.

a) Effluent Screening:

Effluent data obtained from DMR for the period of January 2007 through July 2012 has been reviewed and determined to be suitable for evaluation. There have been no exceedances of the established limitations during this time period.

The following pollutants require a wasteload allocation analysis: Total Residual Chlorine and Ammonia as N.

b) Mixing Zones and Wasteload Allocations (WLAs):

Wasteload allocations (WLAs) are calculated for those parameters in the effluent with the reasonable potential to cause an exceedance of water quality criteria. The basic calculation for establishing a WLA is the steady state complete mix equation:

	WLA	$= \frac{C_0 [Q_e + (f)(Q_s)] - [(C_s)(f)(Q_s)]}{Q_e}$
Where:	WLA	= Wasteload allocation
	C_{o}	= In-stream water quality criteria
	Q_e	= Design flow
	f	= Decimal fraction of critical flow from mixing evaluation
	Q_s	= Critical receiving stream flow
		(1Q10 for acute aquatic life criteria; 7Q10 for chronic aquatic life criteria; 30Q10 for ammonia criteria; harmonic mean for carcinogen-human health criteria; and 30Q5 for non-carcinogen human health criteria)
	C_s	= Mean background concentration of parameter in the receiving stream.

The water segment receiving the discharge via Outfall 001 is considered to have a 7Q10 and 1Q10 of 0.0 MGD. As such, there is no mixing zone and the WLA is equal to the C_o .

c) Effluent Limitations Toxic Pollutants, Outfall 001 -

9VAC25-31-220.D. requires limits be imposed where a discharge has a reasonable potential to cause or contribute to an in-stream excursion of water quality criteria. Those parameters with WLAs that are near effluent concentrations are evaluated for limits.

The VPDES Permit Regulation at 9VAC25-31-230.D requires that monthly and weekly average limitations be imposed for continuous discharges from POTWs and monthly average and daily maximum limitations be imposed for all other continuous non-POTW discharges.

1) Ammonia as N:

Staff reevaluated pH and temperature and has concluded that the pH and temperature data was significantly different than what was used previously to derive ammonia criteria. The resulting ammonia water quality acute criteria using this data was 14.9 mg/L which is less stringent than what was previously calculated and used in the past two permit reissuances. Documentation for ammonia analysis can be found in Attachment 9.

Because the facility was designed to meet an ammonia effluent limitation of 1.7 mg/L (See Attachment 10 – CTO dated September 28, 2000), has had no ammonia effluent limit violations in the past 5 years of data review, and there is no basis for backsliding the ammonia limitation, the existing ammonia effluent limitation of 2.9 mg/L that was established in the 2002 permit reissuance will be carried forward for this permit reissuance. Documentation supporting this ammonia effluent limitation can be found in Attachment 11.

At the time of 2002 analysis of ammonia, DEQ guidance suggests using a sole data point of 10.0 mg/L for discharges containing domestic sewage to ensure the evaluation adequately addresses the potential for ammonia to be present in the discharge containing domestic sewage.

2) Total Residual Chlorine:

Chlorine is used for disinfection and is potentially in the discharge. Staff calculated WLAs for TRC using current critical flows and the mixing allowance. In accordance with current DEQ guidance, staff used a default data point of 0.2 mg/L and the calculated WLAs to derive limits. A monthly average of 0.009 mg/L and a weekly average limit of 0.012 mg/L are proposed for this discharge (see Attachment 12).

3) Metals/Organics:

No metals or organics data were available for review; therefore, no effluent limits are proposed.

d) Effluent Limitations and Monitoring, Outfall 001 - Conventional and Non-Conventional Pollutants

No changes to dissolved oxygen (D.O.), biochemical oxygen demand-5 day (BOD₅), total suspended solids (TSS), ammonia, and pH limitations are proposed.

Dissolved Oxygen and BOD₅ limitations are based on the stream modeling conducted in January 5, 1977, (Attachment 13) and are set to meet the water quality criteria for D.O. in the receiving stream.

It is staff's practice to equate the Total Suspended Solids limits with the BOD₅ limits. TSS limits are established to equal BOD₅ limits since the two pollutants are closely related in terms of treatment of domestic sewage.

pH limitations are set at the water quality criteria.

e) Effluent Limitations and Monitoring Summary.

The effluent limitations are presented in the following table. Limits were established for Flow, BOD₅, Total Suspended Solids, Ammonia as N, pH, Dissolved Oxygen, and Total Residual Chlorine.

The limit for Total Suspended Solids is based on Best Professional Judgement.

The mass loading (kg/d) for monthly and weekly averages were calculated by multiplying the concentration values (mg/L), with the flow values (in MGD) and a conversion factor of 3.785.

Sample Type and Frequency are in accordance with the recommendations in the VPDES Permit Manual.

The VPDES Permit Regulation at 9VAC25-31-30 and 40 CFR Part 133 require that the facility achieve at least 85% removal for BOD and TSS (or 65% for equivalent to secondary). The limits in this permit are water-quality-based effluent limits and result in greater than 85% removal.

18. Antibacksliding:

All limits in this permit are at least as stringent as those previously established. Backsliding does not apply to this reissuance.

19. Effluent Limitations/Monitoring Requirements:

Design flow is 0.0053 MGD.

Effective Dates: During the period beginning with the permit's effective date and lasting until the expiration date.

	BASIS	DISCHARGE LIMITATIONS						MONITORING REQUIREMENTS	
PARAMETER	FOR LIMITS	Monthly Average		Weekly Average		Minimum	<u>Maximum</u>	Frequency	Sample Type
Flow (MGD)	NA	NL		NA		NA	NL	1/D	Estimate
pН	3	NA	NA		NA		9.0 S.U.	1/D	Grab
BOD_5	3, 5	24 mg/L 0.	.48 kg/day	36 mg/L	0.72 kg/day	NA	NA	1/M	Grab
Total Suspended Solids (TSS)	2	24 mg/L 0.	48 kg/day	36 mg/L	0.72 kg/day	NA	NA	1/M	Grab
Dissolved Oxygen (DO)	3, 5	NA		-	NA	5.5 mg/L	NA	1/D	Grab
Ammonia, as N	3, 5	2.9 mg	g/L	2.9	mg/L	NA	NA	1/M	Grab
Total Residual Chlorine (after contact tank)	2, 3, 4	NA		-	NA	1.0 mg/L	NA	1/D	Grab
Total Residual Chlorine (after dechlorination)	3	0.009 m	ng/L	0.01	2 mg/L	NA	NA	1/D	Grab

The basis for the limitations codes are:

MGD = Million gallons per day.

1/D = Once every day.

1. Federal Effluent Requirements

NA = Not applicable.

1/M = Once every month.

2. Best Professional Judgement

NL = No limit; monitor and report.

3. Water Quality Standards

S.U. = Standard units.

- 4. DEQ Disinfection Guidance
- 5. Stream Model- Attachment 13.

Grab = An individual sample collected over a period of time not to exceed 15-minutes.

Estimate = Reported flow is to be based on the technical evaluation of the sources contributing to the discharge.

20. Other Permit Requirements:

a) Part I.B. of the permit contains additional chlorine monitoring requirements, quantification levels and compliance reporting instructions.

These additional chlorine requirements are necessary per the Sewage Collection and Treatment Regulations at 9VAC25-70 and by the Water Quality Standards at 9VAC25-260-170. A minimum chlorine residual must be maintained at the exit of the chlorine contact tank to assure adequate disinfection. No more that 10% of the monthly test results for TRC at the exit of the chlorine contact tank shall be <1.0 mg/L with any TRC <0.6 mg/L considered a system failure. Monitoring at numerous STPs has concluded that a TRC residual of 1.0 mg/L is an adequate indicator of compliance with the *E. coli* criteria. *E. coli* limits are defined in this section as well as monitoring requirements to take effect should an alternate means of disinfection be used.

9VAC25-31-190.L.4.c. requires an arithmetic mean for measurement averaging and 9VAC25-31-220.D requires limits be imposed where a discharge has a reasonable potential to cause or contribute to an instream excursion of water quality criteria. Specific analytical methodologies for toxics are listed in this permit section as well as quantification levels (QLs) necessary to demonstrate compliance with applicable permit limitations or for use in future evaluations to determine if the pollutant has reasonable potential to cause or contribute to a violation. Required averaging methodologies are also specified.

21. Other Special Conditions:

- a) 95% Capacity Reopener. The VPDES Permit Regulation at 9VAC25-31-200.B.4 requires all POTWs and PVOTWs develop and submit a plan of action to DEQ when the monthly average influent flow to their sewage treatment plant reaches 95% or more of the design capacity authorized in the permit for each month of any three consecutive month period. This facility is a POTW.
- b) O&M Manual Requirement. Required by Code of Virginia §62.1-44.19; Sewage Collection and Treatment Regulations, 9VAC25-790; VPDES Permit Regulation, 9VAC25-31-190.E. The permittee shall maintain a current Operations and Maintenance (O&M) Manual. The permittee shall operate the treatment works in accordance with the O&M Manual and shall make the O&M Manual available to Department personnel for review upon request. Any changes in the practices and procedures followed by the permittee shall be documented in the O&M Manual within 90 days of the effective date of the changes. Non-compliance with the O&M Manual shall be deemed a violation of the permit.
- c) <u>CTC, CTO Requirement.</u> The Code of Virginia § 62.1-44.19; Sewage Collection and Treatment Regulations, 9VAC25-790 requires that all treatment works treating wastewater obtain a Certificate to Construct prior to commencing construction and to obtain a Certificate to Operate prior to commencing operation of the treatment works.
- d) <u>Licensed Operator Requirement.</u> The Code of Virginia at §54.1-2300 et seq. and the VPDES Permit Regulation at 9VAC25-31-200 C, and Rules and Regulations for Waterworks and Wastewater Works Operators (18VAC160-20-10 et seq.) requires licensure of operators. This facility requires a Class III operator.
- e) Reliability Class. The Sewage Collection and Treatment Regulations at 9VAC25-790 require sewage treatment works to achieve a certain level of reliability in order to protect water quality and public health consequences in the event of component or system failure. Reliability means a measure of the ability of the treatment works to perform its designated function without failure or interruption of service. The facility is required to meet a Reliability Class of II.
- f) <u>Sludge Reopener</u>. The VPDES Permit Regulation at 9VAC25-31-220.C. requires all permits issued to treatment works treating domestic sewage (including sludge-only facilities) include a reopener clause allowing incorporation of any applicable standard for sewage sludge use or disposal promulgated under Section 405(d) of the CWA. The facility includes a sewage treatment works.
- g) <u>Sludge Use and Disposal.</u> The VPDES Permit Regulation at 9VAC25-31-100.P; 220.B.2., and 420 through 720, and 40 CFR Part 503 require all treatment works treating domestic sewage to submit information on their sludge use and disposal practices and to meet specified standards for sludge use and disposal. The facility includes a treatment works treating domestic sewage.
- h) <u>TMDL Reopener:</u> This special condition is to allow the permit to reopened if necessary to bring it in compliance with any applicable TMDL that may be developed and approved for the receiving stream.

<u>Permit Section Part II.</u> Part II of the permit contains standard conditions that appear in all VPDES Permits. In general, these standard conditions address the responsibilities of the permittee, reporting requirements, testing procedures and records retention.

22. Changes to the Permit from the Previously Issued Permit:

- a) Special Conditions:
 - 1) Indirect Dischargers Special Condition was removed since this facility serves only a school. There is no other wastewater source.
- b) Monitoring and Effluent Limitations: None

23. Variances/Alternate Limits or Conditions:

There are no variances/alternate limits or conditions contained in this permit.

24. Public Notice Information:

First Public Notice Date:

September 28, 2012

Second Public Notice Date:

October 5, 2012

Public Notice Information is required by 9VAC25-31-280 B. All pertinent information is on file and may be inspected, and copied by contacting the: DEQ Northern Regional Office, 13901 Crown Court, Woodbridge, VA 22193, Telephone No. (703) 583-3925, joan.crowther@deq.virginia.gov. See Attachment 14 for a copy of the public notice document.

Persons may comment in writing or by email to the DEQ on the proposed permit action, and may request a public hearing, during the comment period. Comments shall include the name, address, and telephone number of the writer and of all persons represented by the commenter/requester, and shall contain a complete, concise statement of the factual basis for comments. Only those comments received within this period will be considered. The DEQ may decide to hold a public hearing, including another comment period, if public response is significant and there are substantial, disputed issues relevant to the permit. Requests for public hearings shall state 1) the reason why a hearing is requested; 2) a brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requester, including how and to what extent such interest would be directly and adversely affected by the permit; and 3) specific references, where possible, to terms and conditions of the permit with suggested revisions. Following the comment period, the Board will make a determination regarding the proposed permit action. This determination will become effective, unless the DEQ grants a public hearing. Due notice of any public hearing will be given. The public may request an electronic copy of the draft permit and fact sheet or review the draft permit and application at the DEQ Northern Regional Office by appointment.

25. Additional Comments:

Previous Board Action(s): None

Staff Comments: None

Public Comment: No comments were received.

EPA Checklist: The checklist can be found in Attachment 15.

VA0061301 Berkeley Elementary School Wastewater Treatment Plant Fact Sheet Attachments

Attachment	Description
1	Flow Frequency Determination Memo dated January 31, 2002
2	Facility Schematic/Diagram
3	Site Inspection by DEQ Compliance Staff on May 15, 2008
4	DEQ Planning Statement dated August 29, 2012
5	Freshwater Water Quality Criteria/Wasteload Allocated Analysis dated August 29, 2012
6	pH and Temperature data January 2009 – July 2012
7	pH and Temperature data January 1999 – January 2002
8	DGIF Threatened and Endangered Species Database Search dated August 22, 2012
9	2012 Ammonia Analysis
10	September 28, 2000 CTO
11	2002 Ammonia Analysis
12	Total Residual Chlorine Analysis
13	January 5, 1977 Stream Model
14	Public Notice
15	EPA Checklist dated August 31, 2012

To: Paula D. ByŁ .@WDBRG@DEQ From: Paul E. Herman@WQA@DEQ

Cc:

Subject: Berkeley Elementary School STP - VA0061301

Attachment:

Date: 1/31/2002 4:28 PM

Paula,

The Berkeley Elementary School STP discharges to a dry ditch that drains to an intermittent tributary that feeds a small pond. The flow frequencies for dry ditches and intermittent streams are 0.0 cfs for the 1Q10, 7Q10, 30Q5, high flow 1Q10, high flow 7Q10, and harmonic mean.

The intermittent stream feeds into a small pond. Typically, during low flow periods, any flow into a pond is retained as storage. Therefore, retention times should be considered in order to determine the impact the STP discharge has on water quality in the pond.

Let me know if you need additional data or if you have any questions.

Paul E. Herman, P.E. Surface Water Investigations Dept. of Environmental Quality (804) 698-4464

COMMONWEALTH of VIRGINIA

Preston Bryant Secretary of Natural Resources DEPARTMENT OF ENVIRONMENTAL QUALITY
NORTHERN REGIONAL OFFICE
13901 Crown Court, Woodbridge, Virginia 22193
(703) 583-3800 Fax (703) 583-3801
www.deq.virginia.gov

David K. Paylor Director

Thomas A. Faha Regional Director

June 13, 2008

Dr. James A. Meyer Spotsylvania County School Board 8020 Riverstone Drive Fredericksburg, VA 22407

Re: Berkley Elementary School Sewage Treatment Plant Inspection, Permit VA0061301

Dear Dr. Meyer:

Enclosed are copies of the facility technical and laboratory inspection reports generated from observations made while performing a Facility Technical Inspection at Berkley Elementary School - Sewage Treatment Plant (STP) on May 15, 2008. The compliance staff would like to thank Mr. Stewart Robbins for his time and assistance during the inspection.

Summaries for both the technical and laboratory inspections are enclosed.

If you have any questions or comments concerning this report, please feel free to contact me at the Northern Regional Office at (703) 583-3909 or by E-mail at wgharback@deq.virginia.gov.

Sincerely,

Wilamena Harback

Environmental Specialist II

Wilamora Harback

CC:

Permits / DMR File Compliance Manager Compliance Auditor Compliance Inspector OWPC (Steve Stell)

Doug Crooks - Spotsylvania County

DEQ WASTEWATER FACILITY INSPECTION REPORT PREFACE

			r	KETAL	E			***************************************	
VPDES/State Certific	ation No.	(RE) Issua	ance Da	ite	Amendment Da	te		Expiration Da	ite
VA0061301 06/05/			5/07	5/07			06/04/12		
Facility Name					Address		To	elephone Nur	nber
Berkley Sewage T	reatment Plai	nt (STP)			79 Partiow Road sylvania, VA 22553		(540) 582-5	141
Own	er Name	,			Address		T	elephone Nur	nber
Spotsylvania Co	unty Public Se	chools			Riverstone Drive icksburg, VA 22407	,	(540) 834-2	500
Respon	sible Official				Title		T	elephone Nur	mber
Dr. Jam	es A. Meyer			Assist	ant Superintendent	:	(540)	834-2500 E	xt. 1000
Respons	ible Operator			Operati	or Cert. Class/number		T	elephone Nur	nber
Mr. Harry S	tewart Robbir	าร		Class	I / 1909-001268		(540) 582-3	850
TYPE OF FACILITY:				·					
	DOMESTIC					INDU:	STRIAL	ue	
Federal		Major			Major			Primary	
Non-federal	x	Minor		Х	Minor			Secondary	
INFLUENT CHARACTERIS	STICS:				DESIGN:				
		Flow			0.0053 MGD)			
		Population Ser			<500 1 - School Unknown				
		Connections Se							
		BOD ₅							
		TSS		Unknown					
EFFLUENT LIMITS: (mg/	L unless specifie	ed)							
Parameter	Min.	Avg.	M	ax.	Parameter	Min		Avg.	Max.
Flow (MGD)		0.0053	N	4L	TSS			24	36
pH (SU)	6.0		9	.0	BOD ₅			24	36
DO	5.5				TRC Total Contact	1.0			
E. Coli (n/CMLI)		126			TRC Inst Res Max			0.009	0.011
Ammonia		2.9	2	9	TRC Inst Tech Min	0.6	5		
Receiving Stre			eam		Unnamed tributary				
				.,,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	York Riv				
		Discharge Point	(LAT)		38° 07' 11	.2" N			
	D	ischarge Point ((LONG)		77° 37' 06.	5" W			
	AND THE PROPERTY AND THE PARTY						F000	The state of the s	

REV 5/00

DEQ **WASTEWATER FACILITY INSPECTION REPORT** PART 1

Inspection date: May 15, 2008 Date form completed: June 13, 2008 Inspection by: Wilamena Harback Inspection agency: **DEQ NRO** Time spent: 24 hrs Announced: Yes Scheduled: Reviewed by: Yes Stewart Robbins - Spotsylvania County (Berkley Elementary School STP) Present at inspection: TYPE OF FACILITY: **Domestic Industrial** [] Major [] Primary [] Federal [] Major [] Secondary [X] Nonfederal [X] Minor [] Minor Type of inspection: Date of last inspection: December 17, 2002 [X] Routine [] Compliance/Assistance/Complaint Agency: **DEQ NRO** [] Reinspection

Last month average:

<500

Connections served: approx.

1

Population served: approx.

(Influent): Not Tested

Last month average: (Effluent) April 2008:

Last month a	iverage. (i	inuent) Ap	III ZUVO.					
Flow:	0.0050	MGD	pH	6.8	S.U.	DO	7.5	mg/L
TSS	16.8	mg/L	BOD ₅	<ql< td=""><td>mg/L</td><td>Ammonia</td><td><ql< td=""><td>mg/L</td></ql<></td></ql<>	mg/L	Ammonia	<ql< td=""><td>mg/L</td></ql<>	mg/L
TRC, Inst	<ql< td=""><td>mg/L</td><td>TRC, Total</td><td>0.9</td><td>mg/L</td><td>TRC, Inst Tech</td><td>0.9</td><td>mg/L</td></ql<>	mg/L	TRC, Total	0.9	mg/L	TRC, Inst Tech	0.9	mg/L
Res Max			Contact			Min Limit		

DATA VERIFIED IN PREFACE	L] Updated	[X] No changes	
Has there been any new construction?	Ĺ] Yes	[X] No	
If yes, were plans and specifications approved?	L] Yes	[] No	[X]NA
DEQ approval date:				

(A) PLANT OPERATION AND MAINTENANCE

1.	Class and number of licensed operators:	I <u>3</u> II <u>0</u> III <u>0</u>	IV <u>0</u> Traine	e <u>0</u>
2.	Hours per day plant is manned:	1.5-2.0 hours per day	/ 7 days per v	veek
3.	Describe adequacy of staffing.	[X]Good	[] Average	[] Poor
4.	Does the plant have an established program for t	training personnel?	[X] Yes	[] No
5.	Describe the adequacy of the training program.	[X]Good	[] Average	[] Poor
6.	Are preventive maintenance tasks scheduled?	[X]Yes	[]No	
7.	Describe the adequacy of maintenance.	[X]Good	[] Average	[] Poor
8.	Does the plant experience any organic/hydraulic If yes, identify cause and impact on plant:	overloading? [] Yes	[X] No	
9.	Any bypassing since last inspection?	[] Yes	[X] No	
10.	Is the standby electric generator operational?	[] Yes	[] No*	[X] NA
11.	Is the STP alarm system operational?	[] Yes	[] No*	[X] NA
12.	How often is the standby generator exercised? Power Transfer Switch? Alarm System?	NA		
13.	When was the cross connection control device la	ist tested on the potable	water service?	NA
14.	Is sludge being disposed in accordance with the	approved sludge disposa [X] Yes	al plan? [] No	[] NA
15.	Is septage received by the facility? Is septage loading controlled? Are records maintained?	[] Yes [] Yes [] Yes	[X] No [] No [] No	
16.	Overall appearance of facility:	[X] Good	[] Average	[] Poor
_				

- 1. Weekend and holiday coverage is provided by the operations staff from the Thornburg STP (VA0029513).
- 4. VA Tech Short School, Activated Sludge classes, Process Control classes, Sacramento Book Series, etc.
- 20. Sludge is removed by a pump and haul septic service and is currently transported to the Massaponax WWTF (VA0025658) approximately twice per year.

(B) PLANT RECORDS

1.	. Which of the following records does the plant maintain?						
	Operational Logs for each unit process Instrument maintenance and calibration Mechanical equipment maintenance Industrial waste contribution (Municipal Facilities)	[X]Yes [X]Yes [X]Yes [Yes	[] No [] No [] No [] No		[] NA [] NA [] NA [X] NA		
2.	What does the operational log contain?						
	[X] Visual observations [X] Laboratory results [] Control calculations	[X] Flow mea [X] Process a [] Other (spe	djustments				
	Comments:						
3.	3. What do the mechanical equipment records contain?						
	[X] As built plans and specs[X] Manufacturers instructions[] Lubrication schedules	[X] Spare par [X] Equipmer [] Other (spe	nt/parts suppliers	5			
	Comments: Records are kept at the Spotsyl during the inspection.	Ivania County	High School ST	P and	were not observed		
4.	What do the industrial waste contribution record (Municipal Only)	ds contain?					
	[] Waste characteristics[] Impact on plant	[] Locations [] Other (spe	and discharge ty ecify)	pes			
	Comments: NA						
5.	Which of the following records are kept at the p	olant and availab	le to personnel?				
	[X] Equipment maintenance records[] Industrial contributor records[X] Sampling and testing records	[X] Operation [X] Instrume	nal Log ntation records				
6.	Records not normally available to plant personn	nel and their loca	tion: None				
7.	Were the records reviewed during the inspection	n?	[X] Yes	[] N	0		
8.	Are the records adequate and the O & M Manua	al current?	[X] Yes	[] N	o		
9.	Are the records maintained for the required 3-y	ear time period?	Y [X]Yes	[] N	o		
Co	mments:						

(C)	SAMPLING						
1.	Do sampling locations appear to be capable of providing representative samples?	[X]Yes []No*					
2.	Do sample types correspond to those required by the VPDES permit?	[X]Yes []No*					
3.	Do sampling frequencies correspond to those required by the VPDES permit?	[X] Yes [] No*					
4.	Are composite samples collected in proportion to flow?	[] Yes [] No*[X] NA					
5.	Are composite samples refrigerated during collection?	[] Yes [] No*[X] NA					
6.	Does plant maintain required records of sampling?	[X]Yes []No*					
7.	Does plant run operational control tests?	[X]Yes []No					
	Comments:						
(D)) TESTING						
1.	Who performs the testing? [X] Plant [] Central Lab	X] Commercial Lab					
	Name: Facility — Chlorine, DO, and pH Massaponax Central Lab — TSS, BOD₅, and Ammonia						
If	plant performs any testing, complete 2-4.						
2.	What method is used for chlorine analysis? Hach DPD Pocket Colorimeter						
3.	Does plant appear to have sufficient equipment to perform required tests?	[X] Yes [] No*					
4.	Does testing equipment appear to be clean and/or operable?	[X] Yes [] No*					
	Comments:						
(E) FOR INDUSTRIAL FACILITIES WITH TECHNOLOGY BASED LIMITS ONLY							
1.	Is the production process as described in the permit application? (If no, describe of [] Yes [] No [X] NA	hanges in comments)					
2.	Do products and production rates correspond as provided in the permit application [] Yes [] No [X] NA	? (If no, list differences)					
3.	Has the State been notified of the changes and their impact on plant effluent? Da [] Yes [] No* [X] NA	te:					

Wastewater Treatment Description:

This facility is a sewage treatment plant which currently serves one (1) elementary school with a current enrollment of approximately 350 students and owned by the Spotsylvania County School Board. The treatment system has a current a design flow of 0.0053 MGD.

The current system is a small package plant which consists of a bar screen, an aeration basin (activated sludge with extended aeration), a secondary clarifier, and a small aerobic sludge digester. The abandoned sand filters noted during the March 2002 site inspection were demolished and removed in 2005 during construction of an addition to the school.

Flow is received from the school via a grease trap and three septic tanks. From the septic tanks, wastewater then gravity flows directly to the treatment system. Influent then enters the treatment system through the bar screen to catch large debris and then to the aeration basin. Following aeration, effluent enters the secondary clarifier before flowing to the chlorine contact tank. Soda Ash is added every few days for pH control except during the summer months when school is out.

Effluent enters the chlorine contact tank where it is disinfected using sodium hypochlorite tablets followed by dechlorination via sodium sulfite tablets. Following disinfection, effluent is re-aerated prior to discharge via a concrete cascade aerator. Samples are collected at the bottom of the cascade aerator, prior to discharge. Following post aeration, effluent is then discharged through Outfall 001, which is located approximately 350 feet south of the facility on an unnamed tributary of the Mat River (N38° 07' 11" / 77° W37' 06").

The facility is staffed daily for approximately 1- 11/2 hours.

Sludge Treatment and Disposal Methods:

Sludge generated at the facility is pumped from the digester twice per year and hauled to the Massaponax WWTF (VA0025658) located in Spotsylvania County.

Material Storage:

	Material Storage	
Materials Description	Volume Stored	Spill/Stormwater Prevention Measures
Chlorination Tablets	1 – 5 gallon buckets	Stored inside locked storage building, inside the locked fenced area.
Dechlorination Tablets	1 – gallon buckets	Stored inside locked storage building, inside the locked fenced area.
Soda Ash	1 – 30 gallon Trash Can	Stored inside locked storage building, inside the locked fenced area.

UNIT PROCESS: Screening/Comminution

1.	Number of Units:	Manual:	1	Mechanical:	0
	Number in operation:	Manual:	1	Mechanical:	0
2.	Bypass channel provided: Bypass channel in use:		[] Yes [] Yes	[X] No* [] No	
3.	. Area adequately ventilated:		[X] Yes	[] No*	
4.	Alarm system for equipment failure or overloads:		[] Yes	[X] No*	
5.	. Proper flow distribution between units:		[] Yes	[] No	[X] NA
6.	. How often are units checked and cleaned?		Manually	once per day	
7.	Cycle of operation:		Continuous		
8.	Volume of screenings removed	:	<1 cubic	Foot per week	
9.	General condition:		[X]Good	[] Fair	[] Poor

Comments:

• The facility has a low volume of screenings. The screenings that are removed from the bar screen are bagged up and combined with the Spotsylvania County High School screenings and taken to the Massaponax WWTF (VA0025658).

UNIT PROCESS: Activated Sludge Aeration (Extended)

1.	Number of units:	1			Ir	operation:		1	
2.	Mode of operation:	Continuous							
3.	Proper flow distribution between	units:] Yes	[] No*	[]	K]NA	
4.	Foam control operational:		[] Yes	[] No*		K]NA	
5.	Scum control operational:] Yes	I] No*	[]	K]NA	
6.	Evidence of following problems: a. dead spots b. excessive foam c. poor aeration d. excessive aeration e. excessive scum f. aeration equipment malfunc g. other (identify in comments)	tion	<u>[</u> [[[[[] Yes*] Yes*] Yes*] Yes*] Yes*] Yes*		X] No X] No X] No X] No X] No X] No X] No			
7.	Mixed liquor characteristics (as a	available): Not c	oll	ected at the	e ti	ime of inspec	cti	on.	
8.	Return/waste sludge: a. Return Rate: b. Waste Rate: c. Frequency of Wasting:	Not Measured Not Measured Approximatel		once every t	W	o weeks (ML	.55	is the defin	ing factor.).
9.	Aeration system control:	[X] Time Clock		[] Manual	Ľ] Continuous	s[] Other (expl	ain)
10.	Effluent control devices working	properly (oxidati	ior	ditches):	[] Yes	[] No*	[X] NA
11.	General condition:	[X]Good		[] Fair	[] Poor			
Cor	mments:								

- The facility adds soda ash daily made from the following mixture: 20 gallons of water to four 20 ounce scoops.
- The facility does add molasses into the aeration tank to serve as a nutrient/food supplement during the summer months when summer school is in session (with the lower flow, the microorganisms need additional food sources).
- This package plant does have a digester section; however, the facility has it pumped out and taken to the Massaponax WWTF (VA0025658) periodically. It does contain blowers that are cycled 30 minutes on and 30 minutes during the weekdays. The weekend cycle as slightly different.

UNIT PROCESS: Sedimentation

		[X] Primary	[] 5	Secondary	[] Tertiary		
1.	Number of units:	1			In operation:		
2.	Proper flow distribution between	n units:			[] Yes	[] No*	[X] NA
3.	Signs of short circuiting and/or	overloads:			[] Yes	[X] No	
4.	Effluent weirs level: Clean:				[X] Yes [X] Yes	[] No* [] No*	
5.	Scum collection system working	properly:			[X] Yes	[] No*	[] NA
6.	Sludge collection system working	g properly:			[X] Yes	[] No*	
7.	Influent, effluent baffle systems	working proper	ly:		[X] Yes	[] No*	
8.	Chemical addition: Chemicals:				[] Yes	[X] No	
9.	Effluent characteristics:				Clear	ř	
10.	General condition:				[] Good	[X]Fair	[] Poor
Cor	mments:						

UNIT PROCESS: Chlorination

1	No. of chlorinators:	1	In operation:	1
2.	No. of evaporators:	0	In operation:	0
3.	No. of chlorine contact tanks:	1	In operation:	1
4.	Proper flow distribution between units:		[] Yes [] No*	[X] NA
5.	How is chlorine introduced into the wast [] Perforated diffusers [] Injector with single entry point [X] Other — Tablet Feeder (Two Tul			
6.	Chlorine residual in basin effluent: No d	ischarge at the	e time of inspection.	
7.	Applied chlorine dosage: Appro	ximately 4 Tab	olets per Day when sc	hool is in session.
8.	Contact basins adequately baffled:		[X] Yes [] No*	
9.	Adequate ventilation: a. cylinder storage area b. equipment room		[] Yes [] No* [] Yes [] No*	[X] NA [X] NA
10.	Proper safety precautions used:		[X]Yes []No*	
11.	General condition:		[X]Good[]Fair	[] Poor

UNIT PROCESS: Dechlorination

1.	Chemical used:	[] Sulfur Diox	ide [X] Bisulf	fite	[] Other	
2.	No. of sulfonators:	0	In operation:	0		
3.	No. of evaporators:	0	In operation:	0	,	
4.	No. of chemical feeders:	1	In operation:	1		
5.	No. of contact tanks:	1	In operation:	1		
6.	Proper flow distribution between	units:	[] Yes	[]	No*	[X] NA
7.	How is chemical introduced into [] Perforated diffusers [] Injector with single entry po [X] Other — Tablet Feeder (T	int	?			
8.	Control system operational: a. residual analyzers: b. system adjusted:		[X] Yes [] Yes [] Automatic		No*	[] Other:
9.	Applied dechlorination dose:	Approxim	ately 4 Tablets	s per	Day wher	school is in session
10.	Chlorine residual in basin effluer	t: No disch a	irge at the time	e of i	nspection	e.
11.	Contact basins adequately baffle	d:	[X] Yes	[]	No*	[] NA
a.	Adequate ventilation: cylinder storage area: equipment room:		[] Yes [] Yes		No* No*	[X] NA [X] NA
13.	Proper safety precautions used:		[X] Yes	[]	No*	
14.	General condition:		[X]Good	[]	Fair	[] Poor

UNIT PROCESS: Flow Measurement

	[] Influent [] I	ntermediate [X] Effluent
1.	Type measuring device: The operator feed unit.	ors' use a manual (gauge on the dechlorination tablet tube
2.	Present reading: No discharg	je at the time of ir	nspection.
3.	Bypass channel: Metered:	[] Yes [] Yes	[X] No [] No
4.	Return flows discharged upstream from meter: Identify:	[] Yes	[X] No
5.	Device operating properly:	[X] Yes	[] No*
6.	Date of last calibration:	NA	
7.	Evidence of following problems:		
	a. obstructionsb. grease	[] Yes* [] Yes*	[X] No [X] No
8.	General condition:	[X]Good	[] Fair [] Poor

UNIT PROCESS: Post Aeration

1.	Number of units: 1	In operation:	1			
2.	Proper flow distribution between units:	[] Yes	[] No*	[X] NA		
3.	Evidence of following problems: a. dead spots b. excessive foam c. poor aeration d. mechanical equipment failure	[] Yes* [] Yes* [] Yes* [] Yes*	[X] No [X] No	[] NA		
4.	How is the aerator controlled?	[] Time clock	[] Manual	[] Continuous	[X] Other* [] NA
5.	What is the current operating schedule?	Continuous				
6.	Step weirs level:	[X] Yes	[] No	[] NA		
7.	Effluent D.O. level:	o discharge at	the time of ins	pection.		
8.	General condition:	[X]Good	[] Fair	[] Poor		

Comments:

Aeration is achieved whenever water from the dechlorination unit is pumped to the cascade unit.
 This is achieved by two float activated pumps.

UNIT PROCESS: Effluent/Plant Outfall

1.	Type Outfall	[X] Shore based	[] Submerged
2.	Type if shore based:	[] Wingwall	[X] Headwall [] Rip Rap
3.	Flapper valve:	[] Yes [X] No	[] NA
4.	Erosion of bank:	[] Yes [X] No	[] NA
5.	Effluent plume visible?	[] Yes* [X] No	
6.	Condition of outfall and s	upporting structures:	[X]Good []Fair []Poor*
7.	Final effluent, evidence of a. oil sheen b. grease c. sludge bar d. turbid effluent e. visible foam f. unusual color	f following problems: [] Yes*	

Comments:

5. There was no discharge at the time of inspection.

DEPARTMENT OF ENVIRONMENTAL QUALITY - WATER DIVISION LABORATORY INSPECTION REPORT 10/01

	ITY NO: 61301	INSPECTION DATE: May 15, 2008	PREVIOUS INSP. DA December 17, 200	1	PREVIOUS EVALUATION:	***************************************	TIME SPENT: 6 hours	
					Deficiencies			
		S OF FACILITY:	FACILITY CLASS:	FACIL			ANNOUNCED	
Berkley Elementary School STP					- 1	SPECTION?		
	Partlow R		() MAJOR	(X) MUNICIPAL			() YES	
Spots	ylvania, V	A 22553	(25)		0 (Da.))./hemmih w a ((X) NO	
			(X) MINOR	() I) INDUSTRIAL		-SCHEDULED	
			() SMALL	() =	1.		SPECTION?	
			() SMALL	() F	EDERAL	I) YES	
			() VPA/NDC	() (COMMERCIAL LAB) NO	
	CTOR(S):		REVIEWERS:		PRESENT			
Wilam	ena Harb	ack					art Robbins	
		LAPODATO	RY EVALUATION		DE	FICIEN	CIES?	
			CIEVALUATION			Yes	No	
	RATORY R						X	
	· · · · · · · · · · · · · · · · · · ·	LING & ANALYSIS					X	
		QUIPMENT					X	
FIELD	DISSOLV	ED OXYGEN ANALYSIS	PROCEDURES				X	
	•	YSIS PROCEDURES					X	
FIELD	TOTAL RI	SIDUAL CHLORINE AI	NALYSIS PROCEDURE	5			X	
		QUAI	LITY ASSURANCE/QUA	ALITY CO	NTROL			
Y/N	QUALIT	Y ASSURANCE METHOI	D PARAMETERS		F	REQUE	NCY	
Υ	REPLIC/	NTE SAMPLES	TRC & pH			Each ru	n.	
N	SPIKED	SAMPLES						
Υ	STANDA	RD SAMPLES	TRC & pH	-		Daily		
N	SPLIT S	AMPLES						
Y SAMPLE BLANKS TRC			Each run					
N	OTHER					:004:004:004:004:004:004:004:004		
N		R QA DATA? DMR-QA	` ′		ency () Deficiend			
N	QC SAM	PLES PROVIDED?	RATING: ()	No Defici	ency () Deficien	cy (X)) NA	

FACILITY #: **VA0061301**

LABORATORY RECORDS SECTION						
LABORATORY RECORDS INCLUDE THE FOLLOWING:						
X SAMPLING DATE X ANALYSIS DATE CONT MC X SAMPLING TIME X ANALYSIS TIME X INSTRUM X SAMPLE LOCATION X TEST METHOD X INSTRUM X CERTIFIC					IBRATIO	ON NCE
WRITTEN INSTRUCTIONS INCLUDE THE FOL	LOWING:					
X SAMPLING SCHEDULES	X CALCULATIONS	Х	ANALYSIS	PROCE	DURES	
				YES	NO	N/A
DO ALL ANALYSTS INITIAL THEIR WORK?				Х		
DO BENCH SHEETS INCLUDE ALL INFORMAT	TON NECESSARY TO DETERMINE	RESULT	S?	Х		
IS THE DMR COMPLETE AND CORRECT? MO	NTH(S) REVIEWED: April 2007			Х		
ARE ALL MONITORING VALUES REQUIRED B	Y THE PERMIT REPORTED?	AND THE PROPERTY OF THE PERSON		Х		
GENERAL SAMPLING AND ANALYSIS SE	ECTION					
				YES	NO	N/A
ARE SAMPLE LOCATION(S) ACCORDING TO PERMIT REQUIREMENTS?				Х		
ARE SAMPLE COLLECTION PROCEDURES APPROPRIATE?				Х		
IS SAMPLE EQUIPMENT CONDITION ADEQU	ATE?			Х		
IS FLOW MEASUREMENT ACCORDING TO PE	ERMIT REQUIREMENTS?			Х		
ARE COMPOSITE SAMPLES REPRESENTATIV	E OF FLOW?			X		
ARE SAMPLE HOLDING TIMES AND PRESERV	/ATION ADEQUATE?			Х		
IF ANALYSIS IS PERFORMED AT ANOTHER LOCATION, ARE SHIPPING PROCEDURES ADEQUATE? LIST PARAMETERS AND NAME & ADDRESS OF LAB: Massaponax WWTF (TSS, BOD ₅ , and Ammonia)				Х		
LABORATORY EQUIPMENT SECTION						
				YES	NO	N/A
IS LABORATORY EQUIPMENT IN PROPER OF	PERATING RANGE?			Х		
ARE ANNUAL THERMOMETER CALIBRATION(S) ADEQUATE?				Х		
IS THE LABORATORY GRADE WATER SUPPLY ADEQUATE?						Х
ARE ANALYTICAL BALANCE(S) ADEQUATE?						Х

LABORATORY INSPECTION REPORT SUMMARY

PAGATI WAY ON ING TO	Page 23 ed	a trait in a particular of the carbon and the carbo				
FACILITY NAME:			INSPECTION DATE:			
Berkley Elementary School STP		0061301	May 15, 2008			
() Deficiencies	(X)_	No Deficiencies				
LABORATO	RY RECORD	S				
The Laboratory Records section had No Deficiencies not	The Laboratory Records section had No Deficiencies noted during the inspection.					
GENERAL SAMPLI	ING AND AN	ALYSIS				
The General Sampling and Analysis section had No Defici	encies noted	during the inspection	1.			
LABORATOR	Y EQUIPME	NT				
The Laboratory Equipment section had No Deficiencies		•				
INDIVIDUAL	. PARAMETE	RS				
The analysis for the parameter of pH had No Deficiencie	pH - Field s noted durin	g the inspection.				
Total Residual Ch	lorine (TRC)) - Field				
The analysis for the parameter of TRC had No Deficienci	es noted duri	ng the inspection.				
Dissolved Oxygen (DO) - Field						
The analysis for the parameter of DO had No Deficiencies noted during the inspection.						

ANALYST:	Stewart Robbins	VPDES NO	VA0061301
-1		ł	

Parameter: Hydrogen Ion (pH) Method: Electrometric 01/08

Meter: Oakton pH6 Acorn Series

METHOD	OF	ANALYSIS	

IVIETOR	METHOD OF ANALYSIS					
X	18 th Edition of Standard Methods-4500-H-B					
	21 st or On-Line Edition of Standard Methods-4500-H-B (00)					

	pH is a method defined analyte so modifications are not allowed. [40 CFR Part 136.6]	Y	N
1)	Is a certificate of operator competence or initial demonstration of capability available for <u>each analyst/operator</u> performing the analysis? NOTE: Analyze 4 samples of known pH. May use external source of buffer (different lot/manufacturer than buffers used to calibrate meter). Recovery for each of the 4 samples must be \pm 0.1 SU of the known concentration of the sample. [SM 1020 B.1]	x	
2) -	Is the electrode in good condition (no chloride precipitate, etc.)? [2.b/c and 5.b]	Х	
3)	Is electrode storage solution in accordance with manufacturer's instructions? [Mfr.]	Х	
4)	Is meter calibrated on at least a daily basis using three buffers all of which are at the same temperature? [4.a] NOTE: Follow manufacturer's instructions.	X	
5)	After calibration, is a buffer analyzed as a check sample to verify that calibration is correct? Agreement should by within \pm 0.1 SU. [4.a]	x	
6)	Do the buffer solutions appear to be free of contamination or growths? [3.1]	Х	
7)	Are buffer solutions within their listed shelf life or have they been prepared within the last 4 weeks? [3.a]	X	***************************************
8)	Is the cap or sleeve covering the access hole on the reference electrode removed when measuring pH? [Mfr.]	Х	
9)	For meters with ATC that also have temperature display, was the thermometer calibrated annually? [SM2550 B.1]	Х	
10)	Is the temperature of buffer solutions and samples recorded when determining pH? [4.a]	Х	
11)	Is sample analyzed within 15 minutes of collection? [40 CFR 136.6]	Х	
12)	Was the electrode rinsed and then blotted dry between reading solutions (Disregard if a portion of the next sample analyzed is used as the rinse solution)? [4.a]	х	
13)	Is the sample stirred gently at a constant speed during measurement? [4.b]	Х	
14)	Does the meter hold a steady reading after reaching equilibrium? [4.b]	Х	
15)	Is a duplicate sample analyzed after every 20 samples if citing 18 th or 19 th Edition [1020 B.6] or after every 10 samples for 20 th or 21 st Edition [Part 1020] Note: Not required for <i>in situ</i> samples.	х	
16)	Is pH of duplicate samples within 0.1 SU of the original sample? [Part 1020]	Х	
17)	Is there a written procedure for which result will be reported on DMR (Sample or Duplicate) and is this procedure followed? [DEO]	х	***************************************

COMMENTS:	 The facility uses Red Bird for their pH 4.0 buffer (expires 07/27/08), Blue Bird for their pH 7.0 buffer (expires 7/27/08) and Fisher for their 10.0 buffer (expires 6/2009). Buffers are made fresh monthly and were last changed on 05/12/08. The facility does their standard check against a pH 7.0 buffer. The annual NIST verification was performed on 05/08/08.
PROBLEMS:	No problems discussed or observed.

ewart Robbins	VPDES NO	VA0061301
	ewart Robbins	ewart Robbins VPDES NO

Parameter: Total Residual Chlorine Method: DPD Colorimetric (HACH Pocket Colorimeter™) 01/08

Instrument: HACH Pocket Colorimeter

X	D OF ANALYSIS: HACH Manufacturer's Instructions (Method 8167) plus an edition of Standard Methods		
	18 th Edition of Standard Methods 4500-Cl G		
	21 st Edition of Standard Methods 4500-Cl G (00)		
Santanana (canada)		Υ	N
1)	Is a certificate of operator competence or initial demonstration of capability available for each analyst/operator performing this analysis? NOTE: Analyze 4 samples of known TRC. Must use a lot number or source that is different from that used to prepare calibration standards. May not use Spec $\sqrt{\ }^{\text{TM}}$. [SM 1020 B.1]	X	A designation of the second supplies of the second
2)	Are the DPD PermaChem® Powder Pillows stored in a cool, dry place? [Mfr.]	Х	
3)	Are the pillows within the manufacturer's expiration date? [Mfr]	Х	<u> </u>
4)	Has buffering capability of DPD pillows been checked annually? (Pillows should adjust sample pH to between 6 and 7) [Mfr]	Х	000
5)	When pH adjustment is required, is H ₂ SO ₄ or NaOH used? [11.3.1]	Х	
6)	Are cells clean and in good condition? [Mfr]	Х	
7)	Is the low range (0.01-mg/L resolution) used for samples containing residuals from 0-2.00 mg/L? [Mfr.]	Х	
8)	Is calibration curve developed (may use manufacturer's calibration) with daily verification using a high and a low standard? NOTE: May use manufacturer's installed calibration and commercially available chlorine standards for daily calibration verifications. [18th ed 1020 B.5; 21st ed 4020 B.2.b]	X	
9)	Is the 10-mL cell (2.5-cm diameter) used for samples from 0-2.00 mg/L? [Mfr.]	Х	<u> </u>
10)	Is the meter zeroed correctly by using sample as blank for the cell used? [Mfr.]	Х	
11)	Is the instrument cap placed correctly on the meter body when the meter is zeroed and when the sample is analyzed? [Mfr.]	х	
12)	Is the DPD Total Chlorine PermaChem® Powder Pillow mixed into the sample? [HACH 11.1]	Х	
13)	Is the analysis made at least three minutes but not more than six minutes after PermaChem® Powder Pillow addition? [11.2]	Х	
14)	If read-out is flashing [2.20], is sample diluted correctly, then reanalyzed? [1.2 & 2.0]	Х	
15)	Are samples analyzed within 15 minutes of collection? [40 CFR Part 136]	Х	
16)	Is a duplicate sample analyzed after every 20 samples if citing 18th Edition [SM 1020 B.6] or daily for 21st Edition [SM 4020 B.3.c]?	Х	
17)	If duplicate sample is analyzed, is the relative percent difference (RPD) \leq 20? [18th ed. Table 1020 I; 21st ed. DEQ]	Х	

COMMENTS:	 DPD powder pillows expire in December 2012. Spec Check is used and expires August 2009. Conducted on April 2, 2008.
PROBLEMS:	No problems discussed or observed.

ANALYST:	Stewart Robbins	VPDES NO.	VA0061301

Parameter: Dissolved Oxygen

Method: Electrode

Facility Elevation - 0 ft

01/08

Meter: YSI 550A

ME	THOD	OF	ANA	11	VCTC.
IVIE	しつしハノ	UF	AINA	۱L	1010

X 18th Edition of Standard Methods-4500-O G

	21 st or Online Editions of Standard Methods-4500-O G (01)
	DO is a method defined analyte so modifications are not allowed. [40 CFR Part 136.6]
1)	If samples are collected, is collection carried out with a minimum of turbulence and air bubble formation and is the sample bottle allowed to everflow several times its volume? [R 3]

	DO is a metriod defined analyte so modifications are not anowed. [40 CFR Part 130.0]	¥	1.6	
1)	If samples are collected, is collection carried out with a minimum of turbulence and air bubble formation and is the sample bottle allowed to overflow several times its volume? [B.3]		In-Situ	
2)	Are meter and electrode operable and providing consistent readings? [3]	Х		
3)	Is membrane in good condition without trapped air bubbles? [3.b]			
4)	rrect filling solution used in electrode? [Mfr.]			
5)	Are water droplets shaken off the membrane prior to calibration? [Mfr.]	X		
6)	Is meter calibrated before use or at least daily? [Mfr.]	X		
7)	Is calibration procedure performed according to manufacturer's instructions? [Mfr.]	X		
8)	Is sample stirred during analysis? [Mfr.]	In-Situ		
9)	Is the sample analysis procedure performed according to manufacturer's instructions? [Mfr.]	X		
10)	Is meter stabilized before reading D.O.? [Mfr.]	Х		
11)	Is electrode stored according to manufacturer's instructions? [Mfr.]	X		
12)	Is a duplicate sample analyzed after every 20 samples if citing 18 th or 19 th Edition [1020 B.6] or after every 10 samples for 20 th or 21 st Edition [Part 1020] Note: Not required for <i>in situ</i> samples.	In-Situ		
13)	If a duplicate sample is analyzed, is the reported value for that sampling event, the average concentration of the sample and the duplicate? [DEQ]	In-Situ		
14)	If a duplicate sample is analyzed, is the relative percent difference (RPD) $<$ 20? [18 th ed. Table 1020 I; 21 st ed. DEQ]	In-Situ		

COMMENTS:	NIST verification was performed on 05/08/08.
PROBLEMS:	No problems discussed or observed.

Berkley Hill Elementary School STP Photos by: Wilamena Harback Layout by: Wilamena Harback VA0061301 May 15, 2008 Page 1 of 2

7) Chlorine tube feeders at the contact tank.

8) De-chlorination tube feeders.

9) Post aeration

10) Outfall structure with sign

11) Discharge stream

12) Lab building and chemical storage.

Berkley Hill Elementary School STP Photos by: Wilamena Harback Layout by: Wilamena Harback

VA0061301 May 15, 2008 Page 2 of 2 To:

Joan Crowther

From:

Jennifer Carlson

Date:

August 29, 2012

Subject:

Planning Statement for Berkeley Elementary School WWTP

Permit Number:

VA0061301

Information for Outfall 001:

Discharge Type: Municipal Discharge Flow: 0.0053 MGD Receiving Stream: Mat River, UT

Latitude / Longitude: 38° 07′ 07"/-77° 36′ 52′

Rivermile: 1.06 Streamcode: 8-XDP Waterbody: VAN-F18R

Water Quality Standards: Class III, Section 3

Drainage Area: 0.05 mi²

1. Please provide water quality monitoring information for the receiving stream segment. If there is not monitoring information for the receiving stream segment, please provide information on the nearest downstream monitoring station, including how far downstream the monitoring station is from the outfall.

This facility discharges into an unnamed tributary to the Mat River. The nearest downstream DEQ monitoring station is 8-MAT001.87 on the Mat River, located at the Route 647 bridge crossing, approximately 1.76 miles downstream of Outfall 001. The following is the water quality summary for this segment of the Mat River, as taken from the Draft 2012 Integrated Assessment*:

Class III, Section 3.

DEQ ambient monitoring station 8-MAT001.87, at Route 647 (Blaydes Corner Road).

The aquatic life and recreation uses are fully supporting. The wildlife and fish consumption uses were not assessed.

*The Draft 2012 Integrated Report (IR) has been through the public comment period and reviewed by EPA. The 2012 IR is currently being finalized and prepared for release.

2. Does this facility discharge to a stream segment on the 303(d) list? If yes, please fill out Table A.

No.

3. Are there any downstream 303(d) listed impairments that are relevant to this discharge? If yes, please fill out Table B.

Yes.

Table B. Information on Downstream 303(d) Impairments and TMDLs

Waterbody Name	Impaired Use	Cause	Distance From Outfall	TMDL completed	WLA	Basis for WLA	TMDL Schedule
Impairment	Information in	the Draft 2012 Integra	ated Report*	k			
Matta River	Aquatic Life	Benthic Macroinvertebrates	4.0 miles	No	N/A	N/A	2020
	Recreation	E. coli	5.2 miles	No	N/A	N/A	2016

^{*}The Draft 2012 Integrated Report (IR) has been through the public comment period and reviewed by EPA. The 2012 IR is currently being finalized and prepared for release.

4. Is there monitoring or other conditions that Planning/Assessment needs in the permit?

There is a completed downstream TMDL for the aquatic life use impairment for the Chesapeake Bay. However, the Bay TMDL and the WLAs contained within the TMDL are not addressed in this planning statement.

5. Fact Sheet Requirements – Please provide information regarding any drinking water intakes located within a 5 mile radius of the discharge point.

There are no public water supply intakes within a 5 mile radius.

FRESHWATER WATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Facility Name: Berkeley Elementary School WWTP

WWTP Permit No.: VA0061301

Receiving Stream: Mat River, UT

Version: OWP Guidance Memo 00-2011 (8/24/00)

Stream Information		Stream Flows		Mixing Information		Effluent Information	
Mean Hardness (as CaCO3) =	mg/L	1Q10 (Annual) =	0 MGD	Annual - 1Q10 Mix =	100 %	Mean Hardness (as CaCO3) =	50 mg/L
90% Temperature (Annual) =	O geb	7Q10 (Annual) =	0 MGD	- 7Q10 Mix ==	400 %	90% Temp (Annual) =	22.2 deg C
90% Temperature (Wet season) =	O ded C	30Q10 (Annual) =	0 MGD	- 30Q10 Mix =	100 %	90% Temp (Wet season) =	O geb
90% Maximum pH =	SU	1Q10 (Wet season) =	0 MGD	Wet Season - 1Q10 Mix =	% 001	90% Maximum pH =	7,68 SU
10% Maximum pH =	SU	30Q10 (Wet season)	0 MGD	- 30Q10 Mix =	100 %	10% Maximum pH =	ns
Tier Designation (1 or 2) =	7	3005 =	0 MGD			Discharge Flow =	0.0053 MGD
Public Water Supply (PWS) Y/N? =		Harmonic Mean =	0 MGD				
Trout Present Y/N? =							
Early Life Stages Present Y/N? =	Å						

(ug/l unless noted)												A HIGGS against Dascille	-						The state of the s	in company 6	
	Conc.	Acute	Chronic HH (PWS)	HH (PWS)	壬	Acute	Chronic HH	H (PWS)	圭	Acute	Chronic	HH (PWS)	壬	Acute	Chronic	HH (PWS)	Ŧ	Acute	Chronic	HH (PWS)	표
Acenapthene	2	1	1	na	9.9E+02	1	1	na	9.9E+02	ı	1	1	Ţ	1	-				;	na	9.9E+0
Acrolein	0	1	ı	e	9.3E+00	ı	ì	na	9.3E+00	ì	ı	ı	1	ì	ı	ł	1	;	ł	na	9.3E+0
Acrylonitrile ^c	0	1	ı	na	2.5E+00	1	1	па	2.5E+00	ı	1	ì	1	l	1	1	1	i	;	na	2.5E+0
Aldrin ^c Ammonia-N (mo/l)	0	3.0E+00	l	na	5.0E-04	3.0E+00	ı	na	5.0E-04	ı	1	ı	ı	ı	ı	ı	ı	3.0E+00	1	na	5.0E-0
(Yearly)	0	1.49E+01	2.23E+00	па	í	1.49E+01 2.23E+00	23E+00	na	}	1	ı	ţ	ž	1	1	ţ	ı	1.49E+01	2.23E+00	na	1
(High Flow)	0	1.49E+01	3.66E+00	na	ı	1.49E+01 3.66E+00	.66E+00	٦a	ı	1	ı	i	ı	i	ł	ì	1	1.49E+01	3.66E+00	na	ı
Anthracene	0	1	ł	В	4.0E+04	ı	ì	na	4.0E+04	ı	ŧ	1	,	ì	ı	ı	1	ı	:	na	4.0E+0.
Antimony	0	1	1	na	6.4E+02	1	i	na	6.4E+02	I	1	ŧ	1	ì	;	ì	1	ľ	ţ	na	6.4E+0;
Arsenic	0	3.4E+02	1.5E+02	na	ſ	3.4E+02	1.5E+02	na	ı	i	1	ı	1	ł	ı	ı	ı	3.4E+02	1.5E+02	na	;
Barium	0	ł	1	na	1	ì	ŧ	na	1	ı	ı	ţ	1	ì	1	ı	1	ŧ	;	na	;
Benzene ^c	0	I	ſ	na	5.1E+02	ŧ	į	na	5.1E+02	ı	1	ı	ı	1	ı	ı	ı	ŀ	;	na	5.1E+0;
Benzidine ^c	0	ł	1	na	2.0E-03	1	ì	na	2.0E-03	ı	ı	1	!	ı	ı	1	1	ı	ì	na	2.0E-03
Benzo (a) anthracene ^c	0	ı	ŧ	па	1.8E-01	ţ	ı	na	1.8E-01	1	ı	;		ł	ï	l	ı	ı	i	na	1.8E-01
Benzo (b) fluoranthene ^c	0	ı	ı	na	1.8E-01	i	f	na	1.8E-01	ı	ì	;	1	1	1	ı	1	;	ŀ	na	1.8E-01
Benzo (k) fluoranthene ^c	0	ı	ı	na	1.8E-01	ŀ	i	na	1.8E-01	1	ı	ł	1	ł	ı	ı	ı	;	ŧ	na	1.8E-01
Benzo (a) pyrene ^c	0	1	ı	na	1.8E-01	ı	1	na	1.8E-01	1	ŀ	ı	1	1	ı	ı	ı	;	i	13	1.8E-01
Bis2-Chloroethyl Ether ^c	0	ı	;	na	5.3E+00		1	na	5.3E+00	ł	ı	ŀ	1	ı	ı	ı	ı	;	1	na	5.3E+0(
Bis2-Chloroisopropyl Ether	0	1	;	na	6.5E+04	ł	ı	na	6.5E+04	:	ı	ı	1	1	ı	1	ŀ	ŀ	;	28	6.5E+0
Bis 2-Ethylhexyl Phthalate ^c	0	1	:	na	2.2E+01	1	1	na	2.2E+01	1	ı	;	1	1	ı	ı	ı	;	i	na	2.2E+0
Bromoform ^c	0	ı	ì	na	1.4E+03	ı	;	na	1.4E+03	1	ı	:	ı	1	ļ	ı	3	1	;	na	1.4E+0;
Butylbenzyiphthalate	0	I	ł	na	1.9E+03	ŧ	1	na	1.9E+03	ı	ı	1	;	ı	1	1	ŀ	ı	:	na	1.9E+0;
Cadmium	0	1.8E+00	6.6E-01	na	1	1.8E+00 (6.6E-01	na	ŀ	ł	į	ı	ı	ı	ł	ı	1	1.8E+00	6.6E-01	na	:
Carbon Tetrachloride ^c	0	1	ı	na	1.6E+01	ì	ı	na	1.6E+01	ł	1	;	1	ı	ì	ŀ	1	ı	ţ	eu	1.6E+0
Chlordane ^c	0	2.4E+00	4.3E-03	na	8.1E-03	2.4E+00	4.3E-03	na	8.1E-03	ı	ŀ	ŧ	;	1	ı	1	ı	2.4E+00	4.3E-03	na	8.1E-03
Chloride	0	8.6E+05	2.3E+05	na	1	8.6E+05 2	2.3E+05	na		ı	ı	ı	ı	1	ı	ı	ı	8.6E+05	2.3E+05	na	ı
TRC	0	1.9E+01	1.1E+01	na	1	1.9E+01 1	1.1E+01	na	ş		ţ	ı	, 1	:	ł	1	ı	1.9E+01	1.1E+01	na	ı
Chlorobenzene	0	;		na	1.6E+03	1	ı	na	1.6E+03	ı	1	ı	1	ı	ı	ŧ	ŀ	:	ı	29	1.6E+0.

8/29/12 - 9:36 AM

Parameter	Background		Water Quality Criteria	y Criteria			Wasteload Allocations	llocations		Ar	Antidegradation Baseline	Baseline ה		Ant	Antidegradation Allocations	Allocations			Most Limiting Allocations	Allocations	
(ng/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	Ŧ	Acute	Chronic HH	H (PWS)	壬	Acute	Chronic HI	HH (PWS)	壬	Acute	Chronic	HH (PWS)	Ŧ	Acute	Chronic	HH (PWS)	표
Chlorodibromomethane ^c	0	}	:	na	1.3E+02		ž.	na	1.3E+02	1	1	ì	1	;	;	ł	ı	ı	,	na	1.3E+02
Chloroform	0	1	ı	na	1.1E+04	1	ı	na	1.1E+04	ı	ţ	ı		ţ	ŀ	}	ł	;	:	na	1.1E+04
2-Chloronaphthalene	0	ı	1	na	1.6E+03	į	ı	na	1.6E+03	1	;	1	1	1	1	ı	i	1	ı	na	1.6E+03
2-Chlorophenol	0	ı	ı	na	1.5E+02	ţ	ı	na	1.5E+02	i	ł	ı		1	ı	ì	ı	;	ı	na	1.5E+02
Chlorpyrifos	o	8.3E-02	4.1E-02	na	ı	8.3E-02	4.1E-02	na	1	ŀ	ł	1	1	ı	ı	ı	i	8.3E-02	4.1E-02	na	;
Chromium III	0	3.2E+02	4.2E+01	na	1	3.2E+02	4.2E+01	na	1	ļ	1	;	ı	ţ	1	;	ı	3.2E+02	4.2E+01	na	i
Chromium VI	0	1.6E+01	1.1E+01	na	1	1.6E+01	1.1E+01	na	ı	ı	ŀ	ı	ţ	1	ı	ı	ì	1.6E+01	1.1E+01	na	ı
Chromium, Total	0	ì	1	1.0E+02	:	ı	ı	Па	:	1	ł	ı	1	1	ı	1	ı	:	1	na	1
Chrysene ^c	0	ŀ	ı	na	1.8E-02	1	1	na	1.8E-02	ţ	ſ	•	1	ŧ	;	1	ı	1	ì	na	1.8E-02
Copper	0	7.0E+00	5.0E+00	na	1	7.0E+00	5.0E+00	na	ł	1	ı	ţ	1	ı	1	ı	ı	7.0E+00	5.0E+00	na	ì
Cyanide, Free	0	2.2E+01	5.2E+00	na	1.6E+04	2.2E+01	5.2E+00	na	1.6E+04	į	ł	ı	1	ŀ	ł	1	ı	2.2E+01	5.2E+00	na	1.6E+04
o a a a	0	ł	1	na	3.1E-03	ı	;	na	3.1E-03	ı	1	;	ı	1	1	ı	1	ı	į	na	3.1E-03
DDE c	0	1	ì	na	2.2E-03	ı	ì	na	2.2E-03	1	į	ı	1	1	ı	ı	ì	1	ì	na	2.2E-03
DDT °	0	1.1E+00	1.0E-03	na	2.2E-03	1.1E+00	1.0E-03	na	2.2E-03	ı	1	1	ı	1	ì	1	ŀ	1.1E+00	1.0E-03	na	2.2E-03
Demeton	0	1	1.0E-01	na	ì	į	1.0E-01	na	ì	ţ	;	ł	ı	ı	1	ı	ŀ	ı	1.0E-01	na	ì
Diazinon	0	1.7E-01	1,7E-01	Па	ı	1.7E-01	1.7E-01	Па		1	ı	ı	1	1	t	1	1	1.7E-01	1.7E-01	na	1
Dibenz(a,h)anthracene ^c	0	ı	1	na	1.8E-01	1	ı	na	1.8E-01	ì	1	ł		ì	1	ì	ı	;	:	na	1.8E-01
1,2-Dichlorobenzene	0	ı	ı	na	1.3E+03	ı	;	na	1.3E+03	ı	ı	1	ı	ı	ţ	;	1	ţ	;	na	1.3E+03
1,3-Dichlorobenzene	0	ł	1	na	9.6E+02	1	ı	na	9.6E+02	;	1	1		ı	f	ì	ı	ŧ	i	na	9.6E+02
1,4-Dichlorobenzene		I	1	na	1.9E+02	ı	1	na	1.9E+02	ł	ı	ì	ı	I	i	į	ŀ	;	ŀ	na	1.9E+02
3,3-Dichlorobenzidine ^c	0	1	ı	na	2.8E-01	ı	:	na	2.8E-01	ı	1	ł	1	ı	1	ı	ı	ì	ì	na	2.8E-01
Dichlorobromomethane ^c	0	ţ	ŀ	na	1.7E+02	1	ŀ	na	1.7E+02	ì	ŀ	1	1	ŧ	ì	ŧ	ì	ì	ì	na	1.7E+02
1,2-Dichloroethane ^c	0	i	ı	na	3.7E+02	ţ	;	na	3.7E+02	ł	;	1	1	1	ì	1	ŀ	1	ł	na	3.7E+02
1,1-Dichloroethylene	0	ı	ı	па	7.1E+03	ı	1	na	7.1E+03	ı	1	1	1	ı	ţ	ı	1	:	•	na	7.1E+03
1,2-trans-dichloroethylene	0	1	;	na	1.0E+04	ı	1	na	1.0E+04	1	1	ı	·····	1	ı	i	ı	;	;	na	1.0E+04
2,4-Dichlorophenol	0	1	}	па	2.9E+02	1	ı	na	2.9E+02	ı	1	ı	 I	ı	ı	ŀ	ł	1	:	na	2.9E+02
2,4-Dichlorophenoxy	0	;	1	na	ı	ı	ı	na	1	1	ţ	;	Γ	ı	ł	ı	ı	1		na	ì
1,2-Dichloropropane ^c	0	i	i	na	1.5E+02	;	1	na	1.5E+02	ŀ	1	1	1	1	ł	ı	ŀ	ŧ	;	เมล	1.5E+02
1,3-Dichloropropene ^c	0	ł	ł	na	2.1E+02	ł	ŝ	na	2.1E+02	;	1	ı	1	1	ì	ı	ł	ŀ	ł	na	2.1E+02
Dieldrin ^c	0	2.4E-01	5.6E-02	na	5.4E-04	2.4E-01	5.6E-02	na	5.4E-04	ŀ	ı	1	ŀ	ŀ	ł	1	ŀ	2.4E-01	5.6E-02	na	5.4E-04
Diethyl Phthalate	0	ı	;	na	4.4E+04	ı	ŀ	na	4.4E+04	1	ł	;	1	ı	ı	ı	ı	1	ı	e E	4.4E+04
2,4-Dimethylphenol	0	i	ŧ	na	8.5E+02	ı	ţ	na	8.5E+02	ŀ	ı	1	1	ı	I	ı	!	1	;	na	8.5E+02
Dimethyl Phthalate	0	ı	ŀ	Ba	1.1E+06	1	1	na	1.1E+06	ı	;	ŀ	1	ļ	ŀ	ŀ	ı	ı	ŀ	na	1.1E+06
Di-n-Butyl Phthalate	0	ı	ı	na	4.5E+03	1	I	na	4.5E+03	ı	1	ı	1	ţ	ı	1	ı	1	;	na	4.5E+03
2,4 Dinitrophenol	0	1	ì	na	5.3E+03	ı	ł	na	5.3E+03	1	1	1	1,	I	i	ı	ł	ı	ı	na	5.3E+03
2-Methyl-4,6-Dinitrophenol	0	ı	1	na	2.8E+02	1	ł	na	2.8E+02	1	1	ł	1	ŧ	ŀ	ŀ	ì	ı	ì	na	2.8E+02
2,4-Dinitrotoluene	0	1	ı	na	3.4E+01	ı	:	na	3.4E+01	ı	ŧ	1	1	ı	1	ı	1	ı	:	na	3.4E+01
Dioxin 2,3,7,8- tetrachlorodibenzo-p-dioxin	0	ı	1	na	5.1E-08	1	ı	na	5.1E-08	ì	ŀ	ŧ	·	ı	;	ı	;	1	1	na	5.1E-08
1,2-Diphenylhydrazine ^c	0	ł	ı	na	2.0E+00	1	ì	na	2.0E+00	ì	;	1	1	;	1	ł	;	ŀ	:	na	2.0E+00
Alpha-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	2.2E-01	5.6E-02	na	8.9€+01	ı	ł	ı	1	}	ŀ	ı	ı	2.2E-01	5.6E-02	na	8.9E+01
Beta-Endosulfan	0	2.2E-01	5.6E-02	na	8.9E+01	2.2E-01	5.6E-02	па	8.9E+01	ı	1	ŧ	ı	l	1	1	ı	2.2E-01	5.6E-02	na	8.9E+01
Alpha + Beta Endosulfan	0	2.2E-01	5,6E-02	ı	**	2.2E-01	5.6E-02	1	1	1	;	1	1	:	ı	;	ŀ	2.2E-01	5.6E-02	ŧ	ŧ
Endosulfan Sulfate	0	;	ş	na	8.9E+01	f	ı	na	8.9E+01	ı	ı	ı	 !	ı	ŀ	ı	ı	1	:	na	8.9E+01
Endrin	0	8.6E-02	3.6E-02	na	6.0E-02	8.6E-02	3.6E-02	na	6.0E-02	ł	ı	1	1	. •	ı	ł	;	8.6E-02	3.6E-02	na	6.0E-02
Endrin Aldehyde	0		1	na	.3.0E-01	1		na	3.0E-01		1	1	-	,	7		ı			na	3.0E-01

Darameter	Background	-	Water Orality Criteria	Criteria		, in	W/acteload Allocations	Scations		Ant	Antideoradation Baselina	Bacalina	-	Anti	Antidenradation Allocations	llocations	-	2	Most I imiting Allocations	Allocations	
(ug/l unless noted)	Conc.	Acute	Chronic HH (PWS)	1 (PWS)	王	Acute 0	Chronic HH (PWS)	(PWS)	H	Acute 0	Chronic HH (PWS)		王	Acute	Chronic HH (PWS)	1 (PWS)	王	Acute	Chronic H	HH (PWS)	표
Ethylbenzene	0	***************************************	Abenvertaben der er e	na	2.1E+03		-	na 2.	2.1E+03	-	-		-	-	1	1	-	1	+	na	2.1E+03
Fluoranthene	0	ì	ı	e E	1.4E+02	ł	ı	па 1.	1.4E+02	;	ı		I	ſ	ł	1	1	ş	;	na	1.4E+02
Fluorene	0	ı	ì	na	5.3E+03	ı	1	na 5.	5.3E+03	1	1	1	I	1	í	ı	1	;	;	na	5.3E+03
Foaming Agents	0	1	ı	na	1	1	1	na	. 1	ı	i	ţ		ı	1	i	ĵ	1	į	na	ŧ
Guthion	0	ï	1.0E-02	na	1	1	1.0E-02	na	ţ	ı	ſ	ı	ı	ı	ł	1	1	1	1.0E-02	па	, :
Heptachlor ^c	0	5.2E-01	3.8E-03	na	7.9E-04	5.2E-01 3	3.8E-03	na 7	7.9E-04	ŀ	ı	i		i	ı	ı	1	5.2E-01	3.8E-03	na na	7.9E-04
Heptachlor Epoxide ^c	0	5.2E-01	3.8E-03	na	3.9E-04	5.2E-01 3	3.8E-03	na 3	3.9E-04	ŀ	1	ï	;	1	1	ŧ	1	5.2E-01	3.8E-03	na	3.9E-04
Hexachlorobenzene ^c	0	ı	ı	na	2.9E-03	1	1	na 2	2.9E-03	1	1	ı	1	:	ì	1	1	:	1	na	2.9E-03
Hexachlorobutadiene ^c	0	ı	1	na	1.8E+02	ŧ	ŀ	na 1.	1.8E+02	ı	ı	ı	I	ı	ì	ı	1	ı	1	na	1.8E+02
Hexachiorocyclohexane	¢				r C				i.											Š	4 00 00
Hexachlorocyclohexane	>	1	ı	<u>0</u>	4.95-02	I	١ .	<u></u>	30-02	I	ł	1	 I	!	ı	1	!	:	:	3	4,51,70
Beta-BHC ^c	0	!	ı	na	1.7E-01	;	;	na 1	1.7E-01	ŧ	ţ	ı		1	1	ı	 ¦	ŧ	ŀ	na	1.7E-01
Hexachlorocyclohexane Gamma-BHC ^c (Lindane)	c	о - П.	g	g	1 85 400	0 10 10		6	и 100	i	;	i		i		ě		9 5F.01	;	2	1 8E+0f
	> (7	2			7	ı	_	20.	ł	ı			•						1	
Hexachiorocyclopentadiene	0	ł	I	na B	1.1E+03	ı	:	na 1.	1.1E+03	ì	ţ	ì		ļ	ł	ı	;	ı	ł	na	1.1E+03
Hexachloroethane	0	1	ı	na	3.3E+01	1	1	na 3.	3.3E+01	1	ı	1	1	ı	ſ	ı	;		:	na	3.3E+01
Hydrogen Sulfide	0	1	2.0E+00	na	;	- 2	2.0E+00	na		ŧ	ţ	ı		1	;	1	ı	I	2.0E+00	na	:
Indeno (1,2,3-cd) pyrene ^c	0	1	ŧ	па	1.8E-01	ł	:	na 1	1.8E-01	ı	ſ	1		;	ł	ł	i	1	;	na	1.8E-01
iron	0	1	,	na	;	ł	1	na	1	;	1	ı	1	1	1	1	1	·	ı	na	:
lsophorone ^c	0		ı	na	9.6E+03	;	1	na 9.	9.6E+03	ı	ì	;	,	ı	1	l	1	ı	1	na	9.6E+03
Kepone	0	ı	0.0E+00	na	;	0	0.0E+00	na	 ¦	1	ı	1	-	}	ı	i	;	1	0.0E+00	na	ı
l.ead	0	4.9E+01	5.6E+00	na	1	4.9E+01 5.	5,6E+00	na	}	;	ŧ	ł	1	ı	;	ı	1	4.9E+01	5.6E+00	na	;
Malathion	0	ı	1.0E-01	na	1	1	1.0E-01	na		ł	1	1	1		1	1	i	ì	1.0E-01	e E	;
Manganese	0	1	1	na	,	I	1	na	1	1	1	1		ì	ı	ı	1	ì	ı	na	ı
Mercury	0	1.4E+00	7.7E-01	;	;	1.4E+00 7	7.7E-01	;	;	ı	ı	1		*	ŧ	ı	;	1,4E+00	7.7E-01	;	;
Methyl Bromide	0	1	;	na	1.5E+03	į	ŧ	na 1.	1.5E+03	1	ì	ı		1	ł		1	ï	ı	na	1.5E+03
Methylene Chloride ^c	0	1	ŧ	na	5.9E+03	i	í	na 5.	5.9E+03	ţ	1	;		ì	ı	ŧ	;	:	í	na	5.9E+03
Methoxychior	0	,	3.0E-02	na	ł	e 	3.0E-02	na	1	1	ı	,	 1	1	í	ţ	1	ï	3.0E-02	na	;
Mirex	0	1	0.0E+00	na	ı	Ö	0.0E+00	na	1	1	;	ı	<u> </u>	ı	t	1	1	ì	0.0E+00	na	ı
Nickel	0	1.0E+02	1.1E+01	na	4.6E+03 1	1.0E+02 1.	1.1E+01	na 4.	4.6E+03	1	1	ı	<u> </u>	1	1	1	1	1.0E+02	1.1E+01	na	4.6E+03
Nitrate (as N)	0	ł	ı	па	ı	1	ı	na	1	ŧ	ı	•		;	1	ì		:	ı	na	
Nitrobenzene	0	ł	í	na	6.9E+02	ł	1	na 6.	6.9E+02	1	ł	1	1	1	ı	ı	1	:	ı	na	6.9E+02
N-Nitrosodimethylamine ^C	0	ì	;	na	3.0E+01	ı	ı	na 3,	3.0E+01	1	ı	,	1	ı	ı	ŧ	ı	:	:	na	3.0E+01
N-Nitrosodiphenylamine ^c	0	ì	ı	na	6.0E+01	1	ì	na 6.	6.0E+01	;	ı	;	1	ı	t	1	1	1	ı	na	6.0E+01
N-Nitrosodi-n-propylamine ^c	0	ì	1	na	5.1E+00	ı	ı	na 5.	5.1E+00	Į	ı	i	ı	ı	1	ı	1	ı	1	na	5.1E+00
Nonylphenol	0	2.8E+01	6.6E+00	1	- 5	2.8E+01 6.	6.6E+00	na	1	ı	1	ı	1	1	1	ı	1	2.8E+01	6.6E+00	na	1
Parathion	0	6.5E-02	1.3E-02	na	1	6.5E-02 1	1.3E-02	na	1	1	1			ı	1	;	1	6.5E-02	1.3E-02	na	ı
PCB Total ^c	0	1	1.4E-02	na	6.4E-04	-	1.4E-02	na 6.	6.4E-04	1	ł	1	1	;	1	ı	;	;	1,4E-02	na	6.4E-04
Pentachlorophenol ^c	0	7.7E-03	5.9E-03	na	3.0E+01 7	7.7E-03 5	5.9E-03	na 3.	3.0E+01	ş	**	}		ŀ	ı	1	1	7.7E-03	5.9E-03	na	3.0E+01
Phenol	0	ŀ	1	na	8.6E+05	1	. 1	na 8.	8.6E+05	,	1	1	 I	. 1	ı	ı	1	ı	ı	na	8.6E+05
Pyrene	0	1	1	na ,	4.0E+03	ł	I	na 4.	4.0E+03	1	ı	ŀ	;	ı	I	ı	ı		1	na	4.0E+03
Radionuclides Gross Alaba Activity	0	ı	ł	na	ı	į	ı	na	;	1	1	1	1	ŀ	ţ	ţ	1		ı	na	i
(pCi/L)	0	1	ı	na	1	ı	ì	na	1	ł	;	ì	1	t	:	ŧ		1	:	e	į
Beta and Photon Activity	c				00				20											<u>!</u>	;
Radium 226 + 228 (pCi/L)	· c	1	: :			1 1	1 1	E 6	00+00	:		ŀ		ŧ	1	1	ì	:	:	e :	4.0E+00
Uranium (ug/l)	c	ı	;	ş 0		!	ı	<u> </u>	ı	l	ı	ı		ı	ı	ı	· · ·	ŀ	:	<u>.</u>	ì
	, , , , , , , , , , , , , , , , , , ,			l la			-	na	1		1	-	1	***	1	-	-			na	;

Parameter	Background		Water Quality Criteria	lity Criteria			Wasteload Allocations	Allocations		Ą	Antidegradation Baseline	n Baseline		Anti	Antidegradation Allocations	Allocations		2	lost Limiting	Most Limiting Allocations	
(ua/l unless noted)	Conc	Acute	Chronic	Chronic HH (PWS)	Ŧ	Acute	Chronic	HH (PWS)	Ŧ	Acute	Chronic H	HH (PWS)	王	Acute	Chronic Hi	HH (PWS)	壬	Acute	Chronic	HH (PWS)	王
Selenium, Total Recoverable	0	2.0E+01	5.0E+00	na	4.2E+03	2.0E+01	5.0E+00	na	4.2E+03		1		1	ı	;	1	1	2.0E+01	5.0E+00	na	4.2E+03
Silver	0	1.0E+00	ı	na	ı	1.0E+00	ļ	na	1	ı	ļ	t	;	1	ł	i	1	1.0E+00	;	na	;
Sulfate	0	1	1	na	1	ŀ	į	na	1	1	ı	ı	;	ı	ı	ı	1	1	1	па	ŀ
1,1,2,2-Tetrachioroethane	0	;	ì	na	4.0E+01	ł	ŧ	na	4.0E+01	ı	ì	ţ	1	i	1	1	ŀ	:	ì	na	4.0E+01
Tetrachloroethylene ^c	0	1	ı	na	3.3E+01	i	ŀ	na	3.3E+01	ı	1	i	1	ŀ	ţ	ı	1	1	ı	na	3.3E+01
Thallium	0	1	ŧ	na	4.7E-01	1	ı	na	4.7E-01	1	ì	;	1	;	1	ı	;	:	ŀ	มล	4.7E-01
Toluene	0	ì	;	na	6.0E+03	1	1	na	6.0E+03	ļ	ı	ŧ	1	ı	1	ı	ı	;	;	na	6.0E+03
Total dissolved solids	0	ł	š	na	1	1	ı	na	}	1	;	;	1	ı	t	1	ł	ŀ	:	na	1
Toxaphene ^c	0	7.3E-01	2.0E-04	Па	2.8E-03	7.3E-01	2.0E-04	na	2.8E-03	ł	ı	į	1	ł	ı	1	1	7.3E-01	2.0E-04	na	2.8E-03
Tributyltin	0	4.6E-01	7.2E-02	na	1	4.6E-01	7.2E-02	na	1	;	;	ì	1	1	ŀ	1	t	4.6E-01	7.2E-02	na	i
1,2,4-Trichtorobenzene	0	ł	ŀ	Б	7.0E+01	j	ì	na	7.0E+01	1	:	ŧ	ı	1	1	1	t	;	;	na	7.0E+01
1,1,2-Trichloroethane	0	1	1	na	1.6E+02	ı	1	па	1.6E+02	1	ł	ı	t	ţ	i	1	1	ı	ì	na	1.6E+02
Trichloroethylene ^c	0	1	1	na	3.0E+02	}	ì	Б	3.0E+02	ı	ı	1	1	ı	ı	ı	1	;	ŀ	na	3.0E+02
2,4,6-Trichlorophenol ^C	0	1	ı	na	2.4E+01	ı	ì	na	2.4E+01	ı	1	1	1	ı	I	1		;	1	na	2.4E+01
2-(2,4,5-Trichlorophenoxy)	0	ı	ı	na	1	ı	ì	na	ı	ì	ł	1	1	ı	1	į	l	ŧ	;	na	ŀ
Vinyl Chloride ^c	0	;	i	па	2.4E+01	1	1	na	2.4E+01	ţ	ı	ı	;	1	ı	ı	ı	:	ŀ	na	2,4E+01
Zinc	0	6.5E+01	6.6E+01	ē	2.6E+04	6.5E+01	6.6E+01	na	2.6E+04	ŧ		***	1	;	1	1	-	6.5E+01	6.6E+01	na	2.6E+04

14
ä
=
_=
_

1. All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise

- 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals
- 3. Metals measured as Dissolved, unless specified otherwise
- 4. "C" indicates a carcinogenic parameter
- 5. Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information.
 - Antidegradation WLAs are based upon a complete mix.
- 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1(WQC background conc.) + background conc.) for human health
- Harmonic Mean for Carcinogens. To apply mixing ratios from a model set the stream flow equal to (mixing ratio 1), effluent flow equal to 1 and 100% mix. 7. WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens and

Metal	Target Value (SSTV)	Note: do not use QL's lower than the
	1	Section 1
Antimony	6.4E+UZ	minimum u.c.s provided in agency
Arsenic	9.0E+01	guidance
Barium	na	
Cadmium	3.9E-01	
Chromium III	2.5E+01	
Chromium VI	6.4E+00	
Copper	2.8E+00	
Iron	na	
Lead	3.4E+00	
Manganese	na	
Mercury	4.6E-01	
Nickel	6.8E+00	
Selenium	3.0E+00	
Silver	4.2E-01	
Zinc	2.6E+01	

Month/ Year	Day	Temp °C	рН
Jan-09	1	n/d	n/d
	2	n/d	n/d
	3	n/d	n/d
	4	n/d	n/d
	5	11.2	7.06
	6	8.6	6.88
	7	n/d	n/d
	8	8.7	6.83
	9	9.8	7.16
	10	n/d	n/d
	11	n/d	n/d
	12	9.8	7.39
	13	8.8	7.1
	14	9	7.4
	15	7.6	7.8
	16	6.6	7.4
	17	n/d	n/d
	18	n/d	n/d
	19	n/d n/d	n/d
	20	n/d	n/d
	21	7	7.04
	22		
	23	7.6 6.9	7.1 7.49
	24	n/d	n/d
	25	n/d	n/d
	26	4.7	7.11
	27	n/d	n/d
	28	n/d	n/d
	29	8.6	7.4
	30	n/d	n/d
	31	n/d	n/d
Feb-09	1	n/d	n/d
	2	7.4	6.91
	3	8.2	7.24
	4	7.8	7.01
	5	7	7.32
	6	7.8	6.99
	7	n/d	n/d
	8	n/d	n/d
	9	9.4	7.98
	10	9.8	7.35
	11	11.5	7.34
	12	12	6.95
	13	10.6	7.22
	14	n/d	n/d

Month/			
Year	Day	Temp °C	рН
Feb-09	15	n/d	n/d
	16	7.8	7.26
	17	7.8	8.21
	18	9.6	7.2
	19	11	7.17
	20	9.4	7.07
	21	n/d	n/d
	22	n/d	n/d
	23	6.2	7.4
	24	7.6	7.26
	25	8.4	7.25
	26	10.1	7.34
	27	10.3	7.52
	28	n/d	n/d
Mar-09	1	n/d	n/d
	2	n/d	n/d
	3	n/d	n/d
	4	n/d	n/d
	5	6.2	7.6
	6	9.4	6.92
	7	n/d	n/d
	8	n/d	n/d
	9	12.3	7.17
	10	11.2	7.33
	11	14.4	7
	-12	10.9	7.13
	13	11.7	7
	14	n/d	n/d
	15	n/d	n/d
	16	11.2	6.9
	17	8.9	7.1
	18	12.3	7.8
	19	12.4	7.4
	20	10	7.4
	21	n/d	n/d
	22	n/d	n/d
	23	8.4	7,4
	24	10.7	7.1
	25	8	7.1
	26	12.2	7.9
	27	10.5	6.9
	28	n/d	n/d
	29	n/d	n/d
	30	12.6	7.7
	31	9.7	7.3

Year Day Temp °C p Apr-09 1 10.8 7.0 2 14.9 7.4 3 13.5 7.3 4 n/d n/ 5 n/d n/ 6 14.6 7.4 7 14 7.3 8 10.7 7.3 9 14.5 7.6 10 15.3 7.3 11 n/d n/	04 42 81 /d /d 45 114 119 67 39
2 14.9 7.4 3 13.5 7.8 4 n/d n/ 5 n/d n/ 6 14.6 7.4 7 14 7.3 8 10.7 7.3 9 14.5 7.6 10 15.3 7.3 11 n/d n/	42 81 /d /d 45 14 19 67 39
3 13.5 7.8 4 n/d n/ 5 n/d n/ 6 14.6 7.4 7 14 7.5 8 10.7 7.6 9 14.5 7.6 10 15.3 7.3 11 n/d n/	81 /d /d 45 14 19 67 39
4 n/d n/ 5 n/d n/ 6 14.6 7.4 7 14 7.3 8 10.7 7.3 9 14.5 7.6 10 15.3 7.3 11 n/d n/	/d /d 45 14 19 67 39
5 n/d n/d 6 14.6 7.4 7 14 7.3 8 10.7 7.4 9 14.5 7.6 10 15.3 7.3 11 n/d n/d	/d 45 14 19 67 39
6 14.6 7.4 7 14 7.3 8 10.7 7.4 9 14.5 7.6 10 15.3 7.3 11 n/d n/	45 14 19 67 39
7 14 7. 8 10.7 7. 9 14.5 7.6 10 15.3 7.3 11 n/d n/	14 19 67 39 /d
8 10.7 7.6 9 14.5 7.6 10 15.3 7.6 11 n/d n/	19 67 39 /d
9 14.5 7.6 10 15.3 7.3 11 n/d n/	67 39 /d
10 15.3 7.3 11 n/d n/	39 /d
11 n/d n/	/d
12 n/d n/	/d
13 n/d n/	/d
14 n/d n/	/d
15 n/d n/	/d
16 n/d n/	/d
17 n/d n/	/d
18 n/d n/	/d
19 n/d n/	/d
20 12.6 7.:	21
21 14.3 7.6	01
22 11.7 7.:	18
23 14.1 .7.8	86
24 14.8 7.:	35
25 n/d n/	/d
26 n/d n/	/d
27 16.9 7.5	56
28 17.1 7.3	36
29 17.4 7.4	41
30 16.1 7.5	55
May-09 1 17 7.	.5
2 n/d n/	/d
3 n/d n/	/d
4 15.8 7.2	23
5 16.4 7.3	32
6 18 7.2	25
7 16.3 6.6	54
8 18.8 7.6	5Ź
9 n/d n/	′d
10 n/d n/	′d
11 17.6 7.4	14
12 17.7 7.7	76
13 17.7 7.5	52
14 18.9 7.4	49
15 17.9 7	

Month/			
Year	Day	Temp °C	pН
May-09	16	n/d	n/d
	17	n/d	n/d
	18	17.4	7.43
	19	17.9	7.31
	20	17.8	7.45
	21	18.7	7 <i>.</i> 53
	22	19.5	7.23
	23	n/d	n/d
	24	n/d	n/d
	24	n/d	n/d
	25	n/d	n/d
	26	18.5	7.27
	27	19.4	7.09
	28	18.4	7.41
	29	21.3	7.43
	30	n/d	n/d
	31	n/d	n/d
Jun-09	1	20.3	7.25
	2	20.5	7.38
	3	20.8	7.12
	4	20.2	7.3
	5	18.7	6.6
	6	n/d	n/d
	7	n/d	n/d
	8	17.4	7.53
	9	22	7.24
	10	18.8	6.6
	11	21.4	6.68
	12	20	7.54
	13	n/d	n/d
	14	n/d	n/d
	15	n/d	n/d
	16	19.1	7.12
	17	n/d	n/d
	18	n/d	n/d
	19	n/d	n/d
	20	n/d	n/d
	21	n/d	n/d
	22	n/d	n/d
	23	n/d	n/d
	24	18.9	7.32
	25	19.6	6.92
	26	20.2	7.28
	27	n/d	n/d
	28	n/d	n/d
	29	n/d	n/d
	30	18.3	7.28

Month/	T	1	
Year	Day	Temp °C	рН
Jul-09	1	n/d	n/d
	2	n/d	n/d
	3	n/d	n/d
	4	n/d	n/d
	5	n/d	n/d
	6	n/d	n/d
	7	n/d	n/d
	8	n/d	n/d
	9	n/d	n/d
	10	n/d	n/d
	11	n/d	n/d
	12	n/d	n/d
	13	n/d	n/d
	14	n/d	n/d
	15	n/d	n/d
	16	21.5	6.73
	17	21.2	6.25
	18	n/d	n/d
	19	n/d	n/d
	20	n/d	n/d
	21	n/d	n/d
	22	n/d	n/d
	23	n/d	n/d
	24	n/d	n/d
	25	n/d	n/d
	26	n/d	n/d
	27	n/d	n/d
	28	n/d	n/d
	29	n/d	n/d
	30	n/d	n/d
	31	n/d	n/d
Aug-09	1		***************************************
	2		
	3	n/d	n/d
	4	n/d	n/d
	5	n/d	n/d
	6	n/d	n/d
	7	n/d	n/d
	8 9		
	10	n/d	n/d
	11	n/d	n/d
		n/d	n/d
	12 13	n/d	n/d
	13	n/d n/d	n/d n/d
	15	31/4	H/U
	16		

NA	·		
Month/ Year	Day	Temp °C	рН
Aug-09	17	n/d	n/d
	18	n/d	n/d
	19	n/d	n/d
	20	n/d	n/d
	21	21.2	8.91
	22		
	23		
	24	21.5	7.07
	25	24.7	7.52
	26	23.2	7.31
	27	24.7	7.05
****	28	23.6	7.48 ⁻
	29		
	30		
	31	22.9	6.96
Sep-09	1	21.3	7.17
	2	23.6	7.15
	3	22.2	7.38
	4	22	7.46
	5	n/đ	n/d
	6	n/d	n/d
	7	n/d	n/d
	8	22.7	7.24
	9	23	7.32
	10	21	6.82
	11	19.9	7.7
***	12	n/d	n/d
***************************************	13	n/d	n/d
	14	19.5	7.64
	15	20.6	6.99
	16	22.7	7.21
	17	22.6	6.9
	18	22.7	7.29
	19	n/d	n/d
	20	n/d	n/d
	21	21.4	7.38
	22	23.3	7.06
	23	24.9	7.52
	24	22.5	7.43
	25	22.3	7.39
	26	n/d	n/d
***************************************	27	n/d	n/d
	28	18.3	7.09
	29	21.2	7.14
0.000	30	20.6	7.5
Oct-09	1	20.8	7.47
	2	19.8	7.32

Month/			
Year	Day	Temp °C	рН
Oct-09	3	n/d	n/d
	4	n/d	n/d
	5	19.6	7.58
	6	22.9	7.05
	7	20.8	7.3
	8	18.5	7.17
	9	19.7	7.49
	10	n/d	n/d
	11	n/d	n/d
	12	15.8	7.59
	13	20	7.27
	14	16.5	7.45
	15	16.1	7.42
	16	16.6	7.09
	17	n/d	n/d
	18	n/d	n/d
	19	15.2	7.13
	20	16.6	7.28
	21	17.8	7.03
	22	18.1	7.17
	23	16.8	7.27
	24	n/d	n/d
	25	n/d	n/d
	26	16.5	7.34
	27	20	6.92
	28	17.5	7.11
	29	16.5	7.13
	30	16.4	7.18
	31	n/d	n/d
Nov-09	1	n/d	n/d
	2	n/d	n/d
	3	14.5	7.65
	4	16.7	7.5
	5	16.8	7.35
	6	16	7.36
	7	n/d	n/d
	8	n/d	n/d
	9	17	7.15
	10	17.4	7.39
	11	16	6.97
	12	15.2	7.09
	13	12.7	6.64
	14	n/d	n/d
	15	n/d	n/d
	16	15.8	7.99
	17	16.1	6.99
	18	16.9	6.75

Month/			
Year	Day	Temp °C	рН
Nov-09	19	18.5	7.3
	20	15	7.37
	21	n/d	n/d
	22	n/d	n/d
	23	12.2	6.81
	24	15.8	7.12
	25	n/d	n/d
	26	n/d	· n/d
	27	n/d	n/d
	28	n/d	n/d
	29	n/d	n/d
	30	14.9	6.97
Dec-09	1	11	7.62
	2	14.4	7.62
	3	14.4	7.12
	4	14.1	7.42
	5	n/d	n/d
	6	n/d	n/d
	7	13.7	6.95
	8	12.7	6.95
	9	11	6.81
	10	11.7	7.06
	11	100.8	7.18
	12	n/d	n/d
	13	n/d	n/d
	14	12.5	7.11
	15	13.4	7.27
	16	11.9	7.56
	17	11.3	7.42
	18	11.6	7.31
	19	n/d	n/d
	20	n/d	n/d
	21	n/d	n/d
	22	n/d	n/d
	23	n/d	n/d
	24	n/d	n/d
	25	n/d	n/d
	26	n/d	n/d
	27	n/d	n/d
	28	n/d	n/d
	29	n/d	n/d
	30	n/d	n/d
	31	n/d	n/d
Jan-10	1	n/d	n/d
	2	n/d	n/d
ļ	3	n/d	n/d
	4	7.3	7.37

Month/			
Year	Day	Temp °C	pН
Jan-10	5	7.7	6.79
	6	6.7	8.66
	7	6.8	7.16
	8	n/d	n/d
	9	n/d	n/d
	10	n/d	n/d
	11	6.4	7.34
	12	9.2	7.02
	13	9.2	7.17
	14	10.1	6.77
	15	8.8	7.37
	16	n/d	n/d
	17	n/d	n/d
	18	n/d	n/d
	19	10.5	7.46
	20	9.6	7.02
	21	10.3	7.21
	22	9.4	6.91
	23	n/d	n/d
	24	n/d	n/d
	25	n/d	n/d
	26	100.7	7.33
	27	8.2	6.91
	28	8.2	6.64
	29	9.2	6.79
	30	n/d	n/d
	31	n/d	n/d
Feb-10	1		
	2		, ,
	3	n/d	n/d
	4	9.1	7.3
	5	n/d	n/d
	6		
	7		
	8		
	9		
	10	- /-1	
	11	n/d	
	12	n/d	
	13 14	2/4	n/d
		n/d	n/d
	15	n/d	n/d
	16	n/d	n/d
	17	7.9	8.6
	18	4.2	7.2
	19	7.4	7.4
	20	<u> </u>	

Month/			
Year	Day	Temp °C	pН
Feb-10	21	n/d	n/d
	22	7.1	7.3
	23	7.5	6.7
	24	7.7	7.4
	25	8.9	7.3
	26	6.9	6.8
	27		
	28	n/d	n/d
Mar-10	1	7.7	7.91
	2	8.9	7.06
	3	8.9	7.49
	4	7.9	7.5
	5	9.8	7.45
	6	n/d	n/d
	7	n/d	n/d
	8	9.8	7.41
	9	9.7	7.46
	10	11	7.36
	11	12.4	7.2
	12	12.9	7.1
	13		
	14	9.5	6.51
	15	11.6	7.68
	16	12.2	6.78
	17	13.2	7.41
	18	10.1	7.22
	19	13.4	7.28
	20		
	21	n/d	n/d
	22	13.1	8.43
	23	12.8	6.94
	24	14.4	7.21
	25	13.9	7.31
	26	13.6	6.87
	27		
	28	n/d	n/d
	29	12.7	6.83
	30	12	7.01
	31	11.7	7.2
Feb-10	1	7.24	14.8
	2	n/d	n/d
	3		
	4	n/d	n/d
	5	n/d	n/d
	6	n/d	n/d
	7	n/d	n/d
	8	n/d	n/d

Month/			
Year	Day	Temp °C	рН
Feb-10	9	n/d	n/d
	10		
	11	n/d	n/d
	12	14.3	7.2
	13	14.1	7.19
	14	15.5	7.72
	15	14.8	7.51
	16	17.2	7.32
	17	n/d	n/d
	18	n/d	n/d
	19	15.1	7.61
	20	16.2	7.41
	21	13.2	7.4
	22	17.5	6.84
	23	13.1	7.16
	24		
	25	n/d	n/d
	26	13.7	6.83
	27	16.7	7.21
	28	16.3	7.04
	29	15.9	7.17
	30	17.6	7.33
May-10	1		
	2	n/d	n/d
	3	15.6	6.96
	4	17.3	7.43
	5	19.8	7.03
	6	18.3	7.56
	7	16	7.44
	8	, ,	
	9	n/d	n/d
	10	14.4	7.77
	11	18.5	7.37
	12	18.2	7.52
	13	18.7	7.37
	14	19	7.24
	15 16	w / d	ادا م
	16	n/d	n/d
	17	17.4	8.67
	18	18.1	7.6 7.35
	19	19.1 20.1	6.91
	20	19.1	
	21 22	13.1	7.68
	23	n/d	n/d
	23	17.2	n/d 7.07
	25	20.2	
L	23	20.2	7.53

	p		
Month/ Year	Day	Temp °C	рН
May-10	26	21.6	6.92
, 20	27	21.5	7.2
***************************************	28	21.5	7.71
·····	29	n/d	n/d
	30	n/d	n/d
***************************************	31	n/d	n/d
Jun-10	1	23.7	7.9
	2	21.3	7.27
	3	21.6	7.27
	· 4	21.4	7.08
	5		
	6	n/d	n/d
	7	22.5	6.99
	8	18.4	7.47
	9	20.1	7.36
:	10	22.8	7.51
	11	n/d	n/d
	12		
	13	n/d	n/d
	14	n/d	n/d
	15	n/d	n/d
	16	20.9	7.07
	17		
	18	n/d	n/d
	19		
	20 .	n/d	n/d
	21	n/d	n/d
	22	n/d	n/d
	23	n/d	n/d
	24	n/d	n/d
	25	n/d	n/d
	26		
	27	n/d	n/d
	28	n/d	n/d
	29	n/d	n/d
	30	n/d	n/d
Jul-10	1	n/d	n/d
	2	n/d	n/d
	3		
	4	n/d	n/d
	5	n/d	n/d
	6	n/d	n/d
	7	n/d	n/d
	8	n/d	n/d
	9	n/d	n/d
	10		
	11	n/d	n/d

Month/			
Year	Day	Temp °C	pН
Jul-10	12	n/d	n/d
	13		_
	14		
	15	n/d	n/d
	16	n/d	n/d
	17		
	18	n/d	n/d
	19	n/d	n/d
	20	n/d	n/d
	21	n/d	n/d
	22		
	23	n/d	n/d
	24		
	25	n/d	n/d
	26	n/d	n/d
	27	n/d	n/d
	28	n/d	n/d
	29	n/d	n/d
	30	n/d	n/d
	31		
Aug-10	1	n/d	n/d
	2	n/d	n/d
	3	n/d	n/d
	4	22.8	7.47
	5	n/d	n/d
	6	n/d	n/d
	7		
	8	n/d	n/d
	9	n/d	n/d
	10	n/d	n/d
	11	n/d	n/d
	12	n/d	n/d
	13	n/d	n/d
	14		
	15	n/d	n/d
	16	n/d	n/d
	17	n/d	n/d
	18	n/d	n/d
	19	21.2	7.86
	20	n/d	n/d
	21		
	22	n/d	n/d
	23	22.9	7.51
	24	22.9	7.37
	25	22.1	8.17
	26	21.9	7.74
	27	24.1	7.98

Month/			
Year	Day	Temp °C	рН
Aug-10	28		
	29	n/d	n/d
	30	20.4	7.46
	31	24.6	7.03
Sep-10	1	23.8	7.45
	2	24.6	6.32
******	3	25	6.73
***************************************	4		
	5	n/d	n/d
***************************************	6	n/d	n/d
************************	7	21.6	7.6
	8	22	7.64
	9	22.2	7.85
	10	22.1	7.48
	11		
	12	n/d	n/d
	13	19.3	7.39
	14	22.8	7.3
	15	22.1	7.24
	16	23.1	7.42
	17	22.3	7.56
	18		
	19	n/d	n/d
	20	19.8	7.32
	21	21.5	7.78
	22	22.2	7.72
	23	23.8	7.25
	24	21.4	7.55
	25		
	26	n/d	n/d
	27	21.3	7.75
	28	23.6	7.68
	29	22.5	7.56
	30	23.2	7.36
Oct-10	1	22.3	7.26
	2		
ļ	3	n/d	n/d
	4	18	7.69
	5	20.4	7.06
	6	20	6.61
	7	19	7.52
	8	17.8	7.66
	9		
	10	n/d	n/d
<u> </u>	11	20.7	7.61
	12	20.9	7.53
L	13	21	7.46

Month/ Year	Day	Temp °C	pН
Oct-10	14	20	7.03
	15	18.6	7.58
	16		,,,,,
	17	n/d	n/d
	18	17.3	7.66
	19	18	7.31
	20	19.6	6.79
	21	18.4	6.96
	22	17.9	7.1
	23		
	24	n/d	n/d
	25	15.8	7.7
	26	19.7	7.42
***************************************	27	20.3	7.2
	28	17.9	6.73
	29	18.9	7.37
	30		
	31	n/d	n/d
Nov-10	1	n/d	n/d
	2	n/d	n/d
	3	14.7	7.42
	4	17.1	7.05
	5	15.9	7.04
	6		
	7	n/d	n/d
	8	12.4	7.65
	9	14.5	7.6
	10	14.3	7.55
	11	16.6	7.3
	12	15.5	7.61
	13	n/d	n/d
	14		
	15	12.9	7.66
	16	16.1	7.45
	17	16.9	7.45
	18	14.8	7.4
	19	15.7	7.49
	20	n/d	n/d
	21		
	22	16.5	7.37
	23	15.5	7.38
	24	n/d	n/d
	25	n/d	n/d
	26		
	27	n/d	n/d
	28		
	29	12.2	7.67

Month/	***************************************		
Year	Day	Temp °C	Hq
Nov-10	30	11.2	7.38
Dec-10	1	16.4	7.3
	2	14.8	7.27
	3	14.2	7.47
	4	n/d	n/d
	5		
	6	12.6	7.32
	7	10.5	6.86
	8	11.8	7.11
,	9	11.3	7.22
	10	13.4	7.19
	11		
	12	n/d	n/d
	13	9.8	7.54
	14	8.6	7.29
	15	10.6	7.43
	16	n/d	n/d
	17		
	18		
	19	n/d	n/d
	20	9.1	7.64
	21	7.6	7.69
	22		
	23		·····
	24	n/d	n/d
	25		
	26	n/d	n/d
	27		
	28	n/d	n/d
	29		
	30	n/d	n/d
	31		
Jan-11	1		
	2	n/d	n/d
	3	5.1	7.05
	4	10.6	7.57
	5	9.1	7.6
	6	10.3	7.34
	7	10.4	7.35
	8		
	9	n/d	n/d
	10	5.5	7.49
	11	9	7.38
	12	4.8	7.14
	13	9.2	7.22
	14		
	15		

Year Day Temp °C pH Jan-11 16 n/d n/d 17 n/d n/d 18 n/d n/d 19 8.9 7.54 20 8.8 7.27 21 6.7 7.04 22	Month/			
17 n/d n/d 18 n/d n/d 19 8.9 7.54 20 8.8 7.27 21 6.7 7.04 22 23 n/d n/d 24 4 7.09 25 9.5 7.33 26 8.4 7.65 27 n/d n/d 28 7.8 7.8 29 30 n/d n/d 4 7.8 7.8 29 7.39 7.39 3 9.6 7.28 4 9.4 7.23 5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 7.29 13 n/d n/d 14 7.2 7.29 15 8.9 7.66	Year	Day	Temp °C	pН
18 n/d n/d 19 8.9 7.54 20 8.8 7.27 21 6.7 7.04 22 23 n/d n/d 24 4 7.09 25 9.5 7.33 26 8.4 7.65 27 n/d n/d 28 7.8 7.8 29 30 n/d n/d 4 7.8 7.17 Feb-11 1 n/d n/d 4 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d	Jan-11	16	n/d	n/d
19 8.9 7.54 20 8.8 7.27 21 6.7 7.04 22 23 n/d n/d 24 4 7.09 25 9.5 7.33 26 8.4 7.65 27 n/d n/d 28 7.8 7.8 29 30 n/d n/d 4 7.4 7.17 Feb-11 1 n/d n/d 4 9.4 7.23 5 6 n/d n/d n/d 7 8.5 7.09 8 7.9 7.41 7.33 10 n/d n/d n/d 11 7.8 7.33 7.32 10 n/d n/d n/d 11 7.8 7.33 7.22 12 13 n/d n/d 14 7.2 7.29 7.6 <td></td> <td>. 17</td> <td>n/d</td> <td>n/d</td>		. 17	n/d	n/d
20 8.8 7.27 21 6.7 7.04 22		18	n/d	n/d
21 6.7 7.04 22 23 n/d n/d 24 4 7.09 25 9.5 7.33 26 8.4 7.65 27 n/d n/d 28 7.8 7.8 29 30 n/d n/d 4 7.4 7.17 Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49		19	8.9	7.54
22 n/d n/d 24 4 7.09 25 9.5 7.33 26 8.4 7.65 27 n/d n/d 28 7.8 7.8 29 30 n/d n/d 4 29 7.17 Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52		20	8.8	7.27
23 n/d n/d 24 4 7.09 25 9.5 7.33 26 8.4 7.65 27 n/d n/d 28 7.8 7.8 29		21	6.7	7.04
24 4 7.09 25 9.5 7.33 26 8.4 7.65 27 n/d n/d 28 7.8 7.8 29 30 n/d n/d 4 9.4 7.17 Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 21 10.9 7		22		
25 9.5 7.33 26 8.4 7.65 27 n/d n/d 28 7.8 7.8 29 30 n/d n/d 31 5.4 7.17 Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d		23	n/d	n/d
26 8.4 7.65 27 n/d n/d 28 7.8 7.8 29 30 n/d n/d 31 5.4 7.17 Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35		24	4	7.09
27 n/d n/d 28 7.8 7.8 29 30 n/d n/d 31 5.4 7.17 Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26		25	9.5	7.33
28 7.8 7.8 29 30 n/d n/d 31 5.4 7.17 Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 <td></td> <td>26</td> <td>8.4</td> <td>7.65</td>		26	8.4	7.65
29 n/d n/d 30 n/d n/d 31 5.4 7.17 Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5		27	n/d	n/d
30 n/d n/d 31 5.4 7.17 Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5 - - 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 - - 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 - - 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 </td <td></td> <td>28</td> <td>7.8</td> <td>7.8</td>		28	7.8	7.8
Feb-11 1 n/d n/d Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5		29		
Feb-11 1 n/d n/d 2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5		30	n/d	n/d
2 9.9 7.39 3 9.6 7.28 4 9.4 7.23 5 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37		31	5.4	7.17
3 9.6 7.28 4 9.4 7.23 5 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 11.8 7.27	Feb-11	1	n/d	n/d
4 9.4 7.23 5 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12		2	9.9	7.39
5 n/d n/d 6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 19 7.2 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d Mar-11 1 11.7 7.14 2 11.8 7.27		3	9.6	7.28
6 n/d n/d 7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		4	9.4	7.23
7 8.5 7.09 8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d Mar-11 1 11.7 7.14 2 11.8 7.27		5		
8 7.9 7.41 9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		6	n/d	n/d
9 9.3 7.32 10 n/d n/d 11 7.8 7.33 12 7.29 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 7.66 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		7	8.5	7.09
10 n/d n/d 11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		8	7.9	7.41
11 7.8 7.33 12 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		9	9.3	7.32
12 n/d n/d 13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19		10	n/d	n/d
13 n/d n/d 14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19		11	7.8	7.33
14 7.2 7.29 15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		12		
15 8.9 7.66 16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		13	n/d	n/d
16 10 7.49 17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		14	7.2	7.29
17 10.9 7.6 18 11.7 7.52 19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		15	8.9	7.66
18 11.7 7.52 19		16	10	7.49
19 20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		17	10.9	7.6
20 n/d n/d 21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		18	11.7	7.52
21 10.9 7.35 22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		19		
22 8.5 7.26 23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		20	n/d	n/d
23 10.4 7.57 24 10.7 7.23 25 10.9 7.48 26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		21	10.9	7.35
24 10.7 7.23 25 10.9 7.48 26 7 7/0 7/0 7/0 7/0 7/0 7/0 7/0 7/0 7/0 7		22	8.5	7.26
25 10.9 7.48 26		23	10.4	7.57
26 27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		24	10.7	7.23
27 n/d n/d 28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		25	10.9	7.48
28 11.1 7.37 Mar-11 1 11.7 7.14 2 11.8 7.27		26		
Mar-11 1 11.7 7.14 2 11.8 7.27		27	n/d	n/d
2 11.8 7.27		28	11.1	7.37
	Mar-11	1	11.7	7.14
3 11.7 7.38		2	11.8	7.27
		3	11.7	7.38

Month/ Year	Day	Temp °C	pН
Mar-11	4	10.9	7.49
	5		
	6	n/d	n/d
	7	9.8	6.97
	8	11.9	7.3
	9	9.2	6.49
	10	10.2	7.3
	11	10.7	6.95
	12		
	13	n/d	n/d
	14	12.1	7.35
	15	11.5	7.05
	16	12.6	6.67
	17	11.5	7.46
	18	13.4	7.48
	19		
	20	n/d	n/d
	21	10	7.01
	22	12.3	7.29
	23	15.2	7.19
	24	12.9	7.12
	25	n/d	n/d
	26		
	27	n/d	n/d
	28	10.5	7.36
	29	11.1	7,34
	30	10.7	7.09
	31	12.4	7.42
Apr-11	1	12	7.48
	2		
	3	n/d	n/d
	4	11.4	7.26
	5	12.8	7.28
	6	14.3	7.24
	7	14.7	7.45
	8	14.5	7.58
	9		
	10	n/d	n/d
	11	14.1	7.21
	12	15.7	7.61
	13	15.1	7.33
	14	11.5	6.4
	15	15.4	7.13
	16		
	17	n/d	n/d
	18	n/d	n/d
	19	n/d	n/d

Month/	*********		
Year	Day	Temp °C	рН
Apr-11	20	n/d	n/d
	21	n/d	n/d
	22	n/d	n/d
	23		
	24	n/d	n/d
	25	n/d	n/d
	26	15.8	7.48
	27	16.8	6.93
	28	16.2	6.49
	29	17.7	7.18
	30		
May-11	1	n/d	n/d
	2	15.7	7.56
	3	18	7.45
	4	17	6.95
	5	17.5	7.53
	6	16.1	7.44
	7		
	8	n/d	n/d
	9	17.5	7.58
	10	17.5	7.24
	11	16.9	7.27
	12	18.1	7.42
	13	18.3	7.32
	14		
	15	n/d	n/d
	16	17.5	7.2
	17	17.8	7.15
	18	19.7	7.14
	19	20	7.22
	20	18.6	7.54
	21		
	22	n/d	n/d
	23	20.1	7.52
	24	20.4	7.58
	25	21.4	7.56
	26	19.8	7.24
	27	22.3	7.34
	28		
	29	n/d	n/d
	30		
:	31	20.8	6.98
Jun-11	1	23.4	7.27
	2	23.4	7.41
	3	22.7	7.41
	4		
	5	n/d	n/d
		L	-

Month/			
Year	Day	Temp °C	рН
Jun-11	6	18.2	7.3
	7	20.6	7.32
	8	20.8	7.49
	9	23.6	7.22
	10	23	7.57
	11	n/d	n/d
	12	n/d	n/d
	13	n/d	n/d
	14	n/d	n/d
	15	21.5	7.37
	16		
	17	n/d	n/d
	18		
	19	n/d	n/d
	20	21.5	7.18
	21	n/d	n/d
	22	n/d	n/d
	23	n/d	n/d
	24	n/d	n/d
	25		
	26	n/d	n/d
	27	21.4	7.38
	28	21.5	6.42
	29	n/d	n/d
	30	n/d	n/d
Jul-11	1		
	2		
	3		
	4		
	5	n/d	n/d
	6		***************************************
	7	n/d	n/d
	8		
	9		
	10	n/d	n/d
	11		
	12	n/d	n/d
	13		
	14	n/d	n/d
	15	n/d	n/d
	16		
	17	n/d	n/d
	18		
	19	n/d	n/d
	20		
	21		
	22	n/d	n/d

Month/ Year	Day	Temp °C	
Jul-11	Day 23	Temp c	pH
JUI 11	24	n/d	n/d
	25	11/4	11/4
	26	n/d	n/d
	27	11/4	/// 4
	28	n/d	n/d
	29	1,70	11/4
	30		
	31	n/d	n/d
Aug-11	1	n/d	n/d
	2	n/d	n/d
	3	n/d	n/d
	4	n/d	n/d
	5	n/d	n/d
	6		
	7	n/d	n/d
	8	n/d	n/d
	9	n/d	n/d
	10	n/d	n/d
	11	n/d	n/d
	12	n/d	n/d
	13		
	14	n/d	n/d
	15	n/d	n/d
	16	n/d	n/d
	17		
	18	n/d	n/d
	19	n/d	n/d
	20		
	21	n/d	n/d
	22	21.3	7.1
	23	20.7	7.4
	24	n/d	n/d
	25	24.3	7.91
	26	24.5	7.92
	27		
	28	n/d	n/d
	29	22.2	7.76
	30	23.2	7.86
	31	23.2	7.62
Sep-11	1	23.7	7.63
	2	22.8	7.64
	3		
	4	n/d	n/d
14111	5	n/d	n/d
	6	22.2	7.38
	7	23	7.32

Month/		· · · · · · · · · · · · · · · · · · ·	
Year	Day	Temp °C	рН
Sep-11	8	22	7.22
	9	24	7.17
	10		
	11	n/d	n/d
	12	22.1	7.67
	13	22.2	7.53
	14	20.5	7.08
	15	22.4	7.54
	16	21.8	7.61
	17		
	18	n/d	n/d
	19	19.2	7.7
	20	21.2	7.68
	21	21.3	7.5
	22	22.8	7.51
	23	22.4	7.46
	24		
	25	n/d	n/d
	26	22.4	7.09
	27	22.8	7 <i>.</i> 36
	28	23.1	7.42
	29	23.1	7.39
	30	22.5	7.71
Oct-11	1		
	2	n/d	n/d
	3	19.2	7.64
	4	20.1	7.49
	5	20.7	7.47
	6	20.4	7.53
	7	19.9	7.64
	8		
	9	n/d	n/d
	10	19.9	7.46
	11	19.8	7.57
	12	19.3	7.49
	13	21.7	7.44
	14	20.8	7.21
	15		
	16	n/d	n/d
	17	18.7	7.27
	18	20.3	7.37
	19	20.1	7.35
	20	19.1	7.32
	21	18.6	7.56
	22		
	23	n/d	n/d

Month/Year Day Temp °C pH Oct-11 25 17.9 7.41 26 19.8 7.28 27 19.9 7.36 28 14.4 7.1 29	Month /			***************************************
26 19.8 7.28 27 19.9 7.36 28 14.4 7.1 29 30 n/d n/d 31 14.3 7.63 Nov-11 1 14.5 7.61 2 15.1 7.7 3 16.7 7.37 4 16.7 7.5 5 6 n/d n/d 7 16.1 7.63 8 n/d n/d 9 13.9 7.73 10 14.9 7.32 11 15.7 7.42 12 12 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d </td <td>l i</td> <td>Day</td> <td>Temp °C</td> <td>рН</td>	l i	Day	Temp °C	рН
27 19.9 7.36 28 14.4 7.1 29	Oct-11	25	17.9	7.41
28 14.4 7.1 29		26	19.8	7.28
29 n/d 30 n/d 31 14.3 7.63 Nov-11 1 14.5 7.61 2 15.1 7.7 3 16.7 7.37 4 16.7 7.5 5 - - 6 n/d n/d 7 16.1 7.63 8 n/d n/d 9 13.9 7.73 10 14.9 7.32 11 15.7 7.42 12 - - 12 - - 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 - - 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24<		27	19.9	7.36
30 n/d n/d 31 14.3 7.63 Nov-11 1 14.5 7.61 2 15.1 7.7 3 16.7 7.37 4 16.7 7.5 5 - - 6 n/d n/d 7 16.1 7.63 8 n/d n/d 9 13.9 7.73 10 14.9 7.32 11 15.7 7.42 12 - - 12 - - 12 - - 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 - - 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.83 <td></td> <td>28</td> <td>14.4</td> <td>7.1</td>		28	14.4	7.1
Nov-11 1 14.5 7.61 Nov-11 1 14.5 7.61 2 15.1 7.7 3 16.7 7.37 4 16.7 7.5 5 - - 6 n/d n/d 7 16.1 7.63 8 n/d n/d 9 13.9 7.73 10 14.9 7.32 11 15.7 7.42 12 - - 12 - - 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 - - 20 n/d n/d 14.9 7.48 22 16 7.55 23 14.7 7.23 24 - - 25 n/d n/d<		29		
Nov-11 1 14.5 7.61 2 15.1 7.7 3 16.7 7.37 4 16.7 7.5 5 6 n/d n/d 7 16.1 7.63 8 n/d n/d 9 13.9 7.73 10 14.9 7.32 11 15.7 7.42 12 12 12 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 <t< td=""><td></td><td>30</td><td>n/d</td><td>n/d</td></t<>		30	n/d	n/d
2 15.1 7.7 3 16.7 7.37 4 16.7 7.5 5		31	14.3	7.63
3 16.7 7.37 4 16.7 7.5 5	Nov-11	1	14.5	7.61
4 16.7 7.5 5		2	15.1	7.7
5 n/d n/d 6 n/d n/d 7 16.1 7.63 8 n/d n/d 9 13.9 7.73 10 14.9 7.32 11 15.7 7.42 12 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.6		3	16.7	7.37
6 n/d n/d 7 16.1 7.63 8 n/d n/d 9 13.9 7.73 10 14.9 7.32 11 15.7 7.42 12 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.		4	16.7	7.5
7 16.1 7.63 8 n/d n/d 9 13.9 7.73 10 14.9 7.32 11 15.7 7.42 12 12 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d 14.9 7.48 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2	-	5		
8 n/d n/d 9 13.9 7.73 10 14.9 7.32 11 15.7 7.42 12 12 12 12 12 12 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d 19 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 10 15.9 7.43 29 15.9 7.43		6	n/d	n/d
9 13.9 7.73 10 14.9 7.32 11 15.7 7.42 12 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 4 n/d n/d 4 n/d n/d n/d		7	16.1	7.63
10 14.9 7.32 11 15.7 7.42 12 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 4 n/d n/d 5 15.7 7.75 6 15.8 7.72 7		8	n/d	n/d
11 15.7 7.42 12 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 4 n/d n/d 5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6		9	13.9	7.73
12 13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19		10	14.9	7.32
13 n/d n/d 14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19		11	15.7	7.42
14 115.9 7.74 15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 4 n/d n/d 4 n/d n/d n/d 5 15.7 7.75 6 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12		12		
15 16.2 7.96 16 17 7.45 17 15.8 7.55 18 15.5 7.6 19		13	n/d	n/d
16 17 7.45 17 15.8 7.55 18 15.5 7.6 19	·	14	115.9	7.74
17 15.8 7.55 18 15.5 7.6 19 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 3 4 n/d n/d n/d 5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22 7.22		15	16.2	7.96
18 15.5 7.6 19 7.48 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 7.23 7.23 24 7.23 7.24 25 n/d n/d 26 7.7 1.7 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 7.59 3 4 n/d n/d n/d 5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		16	17	7.45
19 n/d n/d 20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 4 n/d n/d 4 n/d n/d n/d 5 15.7 7.75 6 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		17	15.8	7.55
20 n/d n/d 21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 4 n/d n/d 4 n/d n/d n/d 5 15.7 7.75 6 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		18	15.5	7.6
21 14.9 7.48 22 16 7.55 23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 4 n/d n/d 5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		19		
22 16 7.55 23 14.7 7.23 24 7.23 25 n/d n/d 26 7.61 n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		20	n/d	n/d
23 14.7 7.23 24 25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3		21	14.9	7.48
24 n/d n/d 25 n/d n/d 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3		22	16	7.55
25 n/d n/d 26 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 4 n/d n/d n/d 5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		23	14.7	7.23
26 n/d n/d 27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3		24		
27 n/d n/d 28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 7.59 3 7.75 6 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		25	n/d	n/d
28 14.7 7.83 29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 7.59 4 n/d n/d 5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		26		
29 15.9 7.43 30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3		27	n/d	n/d
30 15.6 7.61 Dec-11 1 15.2 7.61 2 13.3 7.59 3 7.59 4 n/d n/d 5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		28	14.7	7 <i>.</i> 83
Dec-11 1 15.2 7.61 2 13.3 7.59 3 7.59 4 n/d n/d 5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		29	15.9	7.43
2 13.3 7.59 3 7.59 3 7.59 4 n/d n/d 5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		30	15.6	7.61
3	Dec-11	1	15.2	7.61
4 n/d n/d 5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		2	13.3	7.59
5 15.7 7.75 6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		3		
6 15.8 7.72 7 16.1 7.55 8 11.1 6.6 9 12 7.22		4	n/d	n/d
7 16.1 7.55 8 11.1 6.6 9 12 7.22		5	15.7	7.75
8 11.1 6.6 9 12 7.22		6	15.8	7.72
9 12 7.22		7	16.1	7.55
		8	11.1	6.6
10		9	. 12	7.22
		10		

Month/	***************************************		
Year	Day	Temp °C	pН
Dec-11	11	n/d	n/d
	12	11.1	7.42
	13	10.4	7.49
	14	13.1	7.65
	15	13.5	8.16
	16	12.6	8.24
	17		
	18	n/d	n/d
	19	10.7	8.59
	20	12.4	7.59
	21	n/d	n/d
	22		
	23	,	
	24		
	25	n/d	n/d
	26		
	27	n/d	n/d
	28	n/d	n/d
	29	8.1	6.76
	30	n/d	n/d
	31		
Jan-12	1	n/d	n/d
	2	n/d	n/d
	3	9	7.18
	4	9.6	7.31
	5	8	6.95
	6	10.9	7.32
	7		
	8	n/d	n/d
	9	9.9	7.29
	10	8.8	6.96
	11	8.4	7.04
	12	9.6	6.49
	13	12.1	7.17
	14		
	15	n/d	n/d
	16		
	17	9	7.39
	18	10.8	7.58
	19	10.7	7.51
	20	10.7	7.51
	21		-
	22	n/d	n/d
	23	6.6	6.59
	24	9.1	7.48
	25	10.9	7.77
	26	11.5	7.92

Month/			
Year	Day	Temp °C	рН
Jan-12	27	12.7	8.1
	28		
	29	n/d	n/d
	30	7.5	6.87
	31	11.5	7.95
Feb-12	1	12.4	8.02
	2	13	7.54
	3	12	7.61
	4		
	5	n/d	n/d
	6	10.2	7.48
	7	11	8.91
	8	12.2	7.44
	9	11.7	7.29
	10	11.7	7.33
	11		
	12	n/d	n/d
	13	7.3	6.88
	14	10.4	7.3
	15	11.2	7.46
	16	11.4	7.6
	17	11.9	7.6
	18		
	19	n/d	n/d
	20		
	21	6.7	6.91
	22	11.4	7.55
	23	11.3	8.39
	24	11.9	7.45
	25		
	26	n/d	n/d
	27	8.7	6.8
	28	9.3	7.07
	29	10.2	7.33
Mar-12	1	13	7.07
	2	12.8	7.35
	3		
	4	n/d	n/d
	5	6.3	6.64
	6	9.2	8.78
	7	12.5	7.21
	8	13.3	7.33
	9	12.8	7.26
	10		
	11	n/d	n/d
	12	9	6.79

Month/			
Year	Day	Temp °C	рН
Mar-12	13	12.5	8.89
	14	13.7	7.29
	15	14.9	7.26
	16	15.1	7.35
	17		
	18	n/d	n/d
	19	14.1	7.03
	20	14.8	7.19
	21	16.6	7.27
	22	17	7.32
	23	15.7	7.18
	24		
	25	n/d	n/d
	26	13.4	6.89
	27	14.4	7.7
	28	15.8	7.53
	29	15.8	7.58
	30	15.6	7.51
	31		
Apr-12	1	n/d	n/d
	2	14.9	7.46
	3	15.2	7.73
	4	14.3	7.3
	5	14.5	7.28
	6	n/d	n/d
	7		
	8	n/d	n/d
	9	11	6.44
	10	n/d	n/d
	11	n/d	n/d
	12	n/d	n/d
	13	n/d	n/d
	14		
	15	n/d	n/d
	16	13.7	7.35
	17	14.9	7.15
	18	16.4	7.38
	19	16.3	7.69
	20	16.9	7.43
	21		
	22	n/d	n/d
	23	11.6	6.75
	24	14.6	7.57
	25	14.6	7.46
	26	17.1	7.09
L	27	17.1	7.31

Month/			
Year	Day	Temp °C	рН
Apr-12	28		
	29	n/d	n/d
	30	15.2	7.37
May-12	1	16.5	7.68
	2	18.7	7.5
	3	19.1	7.41
	4	19.9	736
	5		
	6	n/d	n/d
	7	17.2	7.48
	8	16.9	7.6
	9	20.5	7.54
	10	19.7	7.43
	11	18.9	7.59
	12		
	13	n/d	n/d
	14	19.2	7.36
	15	17.9	7.04
	16	20.7	7.16
	17	21	7.16
	18	20	7.35
	19		
	20	n/d	n/d
	21	19.5	7.51
	22	20.3	7.53
	23	20.8	7.46
	24	21.3	7.22
	25	21.8	7.37
	26		
	27	n/d	n/d
	28	n/d	n/d
	29	20.3	7.52
	30	21.8	7.49
	31	21.5	7.54
Jun-12	1	22.6	7.7
	2		
	3	n/d	n/d
	4	19.8	7.65
	5	18.9	7.57
	6	20.9	7.54
	7	21.1	7.38
	8	18.2	7.15
	9		
	10	n/d	n/d
	11	18.8	7.12
	12	19.4	7.25

Month/			
Year	Day	Temp °C	рН
Jun-12	13	n/d	n/d
	14	n/d	n/d
	15	n/d	n/d
	16		
	17		
	18	n/d	n/d
	19	n/d	n/d
	20	n/d	n/d
	21	n/d	n/d
	22		
	23		
	24	n/d	n/d
	25	n/d	n/d
	26	n/d	n/d
	27	n/d	n/d
	28	n/d	n/d
	29	n/d	n/d
	30	n/d	n/d
Jul-12	1	n/d	n/d
	2	n/d	n/d
	3	21.9	7.18
	4		
	5	22.5	7.11
	6	n/d	n/d
	7		., -
	8	n/d	n/d
***************************************	9	23.5	7.36
	10	n/d	n/d
	11	n/d	n/d
	12	n/d	n/d
	13	n/d	n/d
	14		
	15	n/d	n/d
	16	23.1	7.19
	17	23.2	7.18
	18	23.3	7.47
	19	n/d	n/d
-	20	,	***************************************
	21		
	22	n/d	n/d
	23	n/d	n/d
	24	n/d	n/d
	25	n/d	n/d
	26	11/4	.1/ 0
	20	<u> </u>	

Month/ Year	Day	Temp °C	pН
Jul-12	27	n/d	n/d
	28		
	29	n/d	n/d
	30	n/d	n/d
	31	n/d	n/d

Temperature 90th percentile = 22.2° pH 90th percentile = 7.68 SU

Beekeley DH and Temperature Date - January 1999 - Jan 2002

Barkeley Eo Effluent pH & Temp Data from 1/1/1999 to 1/31/2002

Berkeley Eti Effluent pH & Temp Data from 1/1/1999 to 1/31/2002

Berkeley ES Effluent pH & Temp Data from 1/1/1999 to 1/31/		Zerkebau	ES Efficient	nH &	Tamp	Data from	1/1/1999 1/	0 7/31/21	00
--	--	----------	--------------	------	------	-----------	-------------	-----------	----

Berkeley ES Effluent pH & Temp Data from 1/1/1999 to 1/31/2002

COUNT	DATE	рH	pH-Sort	DATE	,	TEMP C-Sort	56		2/28/1999	8.3	6.3	2/28/1999	8	7
1	1/3/1999	6.9	6.0	1/3/1999	7	3	57		3/1/1999	6.2	6.3	3/1/1999	9	7
2	1/4/1999	6.5	6.0	1/4/1999	7	4	58		3/2/1999	6.3	6.3	3/2/1999	9	7
3	1/5/1999	6.8	6.0	1/5/1999	7	4	59		3/3/1999	6.5	6.3	3/3/1999	10	7
4	1/6/1999	6.9	6.0	1/6/1999	6	4 5	60		3/4/1999	6.1	6.3	3/4/1999	10	7
5	1/7/1999	6.9	6.0	1/7/1999	6	5	61		3/5/1999	6.6	6.3	3/5/1999	9	7
6	1/8/1999	8.5	6.0	1/8/1999	7	5	62		3/6/1999	6.1	6.3	3/6/1999	10	7
7	1/9/1999	9.0	6.0	1/9/1999	5	5	63		3/7/1999	6.1	6.3	3/7/1999	3	7
8	1/10/1999	8.8	6.0	1/10/1999 1/11/1999	6	5	64		3/8/1999	8.9	6.3	3/8/1999	6	7
9	1/11/1999	9.0	6.0	1/12/1999	7	5	65	3	3/9/1999	8.6	6.3	3/9/1999	6	7
10	1/12/1999	6.8 6.5	6.0 6.1	1/13/1999	8		66	5	3/10/1999	8.6	6.3	3/10/1999	3	7
11	1/13/1999	6.8	6.1	1/14/1999	7	5	67		3/11/1999	7.0	6.3	3/11/1999	8	7
12	1/14/1999 1/15/1999	7.5	6.1	1/15/1999	à		68		3/12/1999	6.4	6.3	3/12/1999	9	7
13	1/16/1999	7.4	6.1	1/16/1999	7		69		3/13/1999	6.5	6.3	3/13/1999	10 8	
14 15	1/17/1999	8.1	6.1	1/17/1999			70		3/14/1999	8.6	6,3	3/14/1999	7	7
16	1/18/1999	8.0	6.1	1/18/1999			71		3/15/1999	5.0	6.3	3/15/1999	10	7
17	1/19/1999	7.4	6.1	1/19/1999		6	72		3/16/1999	6.7	5.3	3/16/1899 3/17/1999	10	· 2
18	1/21/1999	6.6	6.1	1/21/1999	8	6	73		3/17/1999	6.9	6.3 6.3	3/18/1999	10	7
19	1/22/1999	8.0	6.1	1/22/1999	8		74		3/18/1999	6.5 7.1	6.3	3/19/1999	9	- fr
20	1/23/1999	7.8	6.1	1/23/1999			75 76		3/19/1999 3/20/1999	6.7	6.3	3/20/1999	10	7
21	1/24/1999	7.4	6.1	1/24/1999			75 77		3/21/1999	8.8	6.3	3/21/1999	10	7
22	1/25/1999	6.3	6.1	1/25/1999			78		3/22/1999	6.2	6.4	3/22/1999	9	7
23	1/26/1999	6.4	6.1	1/26/1999			79		3/23/1999	6.3	6.4	3/23/1999	10	7
24	1/27/1999	8.4	6.1	1/27/1999			86		3/24/1999	7.0	6.4	3/24/1999	10	7
25	1/28/1999	7.5	6.1	1/28/1999			a:		3/25/1999	6.5	6.4	3/25/1999	11	7
26	1/29/1999	7.3	6.2	1/29/1999			82		3/26/1999	7.9	6.4	3/26/1999	10	8
27	1/30/1999	7.5	6.2	1/30/1999			83		3/27/1999	8.4	6.4	3/27/1999	8	8
28	1/31/1999	8.5	6.2	1/31/1999			84		3/28/1999	8.9	6.4	3/28/1999	10	8
29	2/1/1999	8.0	6.2	2/1/1999			85		3/29/1999	9.0	6.4	3/29/1999	11	6
30	2/2/1999	6.3	5.2	2/2/1999			86	B	3/30/1999	6.3	6.4	3/30/1999	12	8
31	2/3/1999	6.7	6.2	2/3/1999			87		3/31/1999	6.9	6.4	3/31/1999	12	8
32	2/4/1999	7,4	6.2	2/4/1999			88	ð	4/1/1999	6.3	6.4	4/1/1999	13	8
33	2/5/1999	7.8 6.7	6.2 6.2	2/5/1999 2/6/1999			. 8	9	4/2/1999	6.6	5.4	4/2/1999	13	8
34	2/6/1999 2/7/1999	5:1 8:9	6.2	2/7/1999			90		4/3/1999	7.5	6.4	4/3/1999	12	8
35 36	2/8/1999	8.9	6.2	2/8/1999			9:		4/4/1999	8.6	6.4	4/4/1999	13	8
30 37	2/9/1999	7.2	6.2	2/9/1999			99		4/5/1999	8.8	6.4	4/5/1999	11	8
38	2/10/1999	7.5	6.2	2/10/1999			90		4/6/1999	7.9	6.4	4/6/1999	13 12	8
39	2/11/1999	7.2	6.2	2/11/1999			9-		4/7/1999	7.6	6.4 6.4	4/7/1999 4/9/1999	15	8
40	2/12/1999	7.8	6.2	2/12/1999			9:		4/9/1999	7.2 6.8	6.4	4/10/1999	11	8
41	2/13/1999	6.2	6.2	2/13/1969			9		4/10/1999 4/11/1999	5.6 6.8	6.4	4/11/1999	11	8
42	2/14/1999	8.2	6.2	2/14/1999	7	7	9:		4/12/1999	6.4	6.4	4/12/1999	13	š
43	2/15/1999	8.5	6.2	2/15/1999	7	7	9:		4/13/1989	7.0	6.4	4/13/1999	13	
44	2/16/1999	6.3	6.2	2/16/1999			10		4/14/1999	7.1	6.5	4/14/1999	14	8
45	2/17/1999	7.3	6.2	2/17/1999			16		4/15/1999	7.4	6.5	4/15/1999	12	8
48	2/18/1999	6.1	6.2	2/18/1999			16		4/16/1999	7.1	6.5	4/16/1999	12	8
47	2/19/1999	6.7	6.3	2/19/1999	10		10		4/17/1999	7.4	6.5	4/17/1999	13	8
48	2/20/1999	6.5	6.3	2/20/1999			10		4/18/1999	8.3	6.5	4/18/1999	10	8
49	2/21/1999	8.4	6.3	2/21/1999			10		4/19/1999	6.8	6.5	4/19/1999	13	8
50	2/22/1999	8.7	5.3	2/22/1999			10		4/20/1999	6.3	6.5	4/20/1999	14	8
51	2/23/1999	6.9	6.3	2/23/1999			10		4/21/1999	7.0	6.5	4/21/1999	13	8
52	2/24/1999	6.3	6.3	2/24/1999	8		10	38	4/22/1999	7.1	6.5	4/22/1999	12	8
53	2/25/1999	8.6	6.3	2/25/1999	7 8	7	10	19	4/23/1999	7.2	6.5	4/23/1999	14	8
54 55	2/26/1999	8.3 7.1	6.3 6.3	2/26/1999 2/27/1999		7	11	10	4/24/1999	6.8	6.5	4/24/1999	11	8
99	2/27/1999	6.3	0.5	2/2//1998	,	,	11	11	4/25/1999	8.8	6.5	4/25/1999	12	8

112	4/26/1999	8.7	6.5	4/26/1999	13	8	168	9/18/1999	6.9	6.7	9/18/1999	19	9
	4/27/1999	6.2	6.5	4/27/1999	16	8	169	9/19/1999	8.0	6.7	9/19/1999	18	9
113	4/28/1999	6.7	6.5	4/28/1999	15	8	170	9/20/1999	9.0	6.7	9/20/1999	19	9
	4/29/1999	7.1	6.5	4/29/1999	16	8	171	9/21/1999	7.2	6.7	9/21/1999	20	9
115		7.4	6.5	4/30/1999	14	8			6.4	6.7	9/22/1999	18	10
116	4/30/1999	8.4	6.5	5/1/1999	10	g.	172	9/22/1999		6.7	9/23/1999	17	10
117	5/1/1999		9.5 8.5	5/2/1999	11	9	173	9/23/1999	7.3		9/24/1999	17	10
118	5/2/1999	7.2	8.5 8.5	5/3/1999	15	g	174	9/24/1999	6.8	6.7	9/25/1999	18	10
119	5/3/1999	6.6		5/4/1989	17	g	175	9/25/1999	7.1	6.7		20	10
120	5/4/1999	6.8	6.5	5/5/1999	17	9	176	9/27/1999	9.0	6.7	9/27/1999	20	10
121	5/5/1999	7.2	6.5		15	g	177	9/28/1999	6.2	6.7	9/28/1999		10
122	5/6/1999	6.7	6.5	5/6/1999	16	9	178	9/29/1999	6.2	6.7	9/29/1999	21	
123	5/7/1999	7.2	6.5	5/7/1999		9	179	9/30/1999	6.2	6.7	9/30/1999	20	10
124	5/8/1999	7.0	6.5	5/8/1999	16	9	180	10/1/1999	6.4	6.7	10/1/1999	20	10
125	5/9/1999	8.5	6.6	5/9/1999	15	9	181	10/2/1999	7.2	5.7	10/2/1999	17	10
126	5/10/1999	8.9	6.6	5/10/1999	17	9	182	10/3/1999	8.6	6.7	10/3/1999	18	10
127	5/11/1999	6.3	6.6	5/11/1999	19		183	10/4/1999	8.2	6.8	10/4/1999	19	10
128	5/12/1999	6,3	6.6	5/12/1999	19	9	184	10/5/1999	6.2	6.8	10/5/1999	19	10
129	5/13/1999	6.9	6,6	5/13/1999	18	9	185	10/6/1999	7.3	6.8	10/6/1999	18	10
130	- 5/14/1999	7.2	6.6	5/14/1999	16	9	186	10/7/1999	7.3	6.8	10/7/1999	20	10
131	5/15/1999	7.1	66	5/15/1999	14	9 .	187	10/8/1999	8.5	6.8	10/8/1999	16	10
132	5/16/1999	8.3	6.6	5/16/1999	15	9	188	10/9/1999	7.0	6.8	10/9/1999	17	10
133	5/17/1999	8.8	6.6	5/17/1999	16	9	189	10/10/1999	7.5	5.8	10/10/1999	18	10
134	5/18/1999	6.2	6.6	5/18/1999	16	9	190	10/11/1999	7.4	6.8	10/11/1999	19	10
135	5/19/1999	6.4	6.6	5/19/1999	18	9	191	10/12/1999	7.9	6.8	10/12/1999	17	10
136	5/20/1999	7.0	56	5/20/1999	18	9	192	10/13/1999	7.1	6.8	10/13/1999	16	10
137	5/21/1999	6.8	6.6	5/21/1999	17	9	193	10/14/1999	6.7	6.8	10/14/1999	16	10
138	5/22/1999	6.6	6.6	5/22/1999	16	9	194	10/15/1999	7.4	6.8	10/15/1999	15	10
139	5/23/1999	8.5	6.6	5/23/1999	17	9	195	10/16/1999	7.3	6.8	10/16/1999	15	10
140	5/24/1999	6.3	6.6	5/24/1999	20	9	196	10/18/1999	7.3	5.8	10/18/1999	16	10
141	5/25/1999	6.2	6.6	5/25/1999	18	9	197	10/19/1999	7.0	6.8	10/19/1999	15	10
142	5/26/1999	6.7	6.6	5/26/1999	20	9	198	10/20/1999	7.6	6.8	10/20/1999	15	10
143	5/27/1999	6.8	6.6	5/27/1999	20	9	199	10/21/1999	6.3	6.8	10/21/1999	16	10
144	5/28/1999	7.2	6.6	5/28/1999	19	9	200	10/22/1999	6.6	5.8	10/22/1999	15	10
145	5/29/1999	6.6	6.6	5/29/1999	18	9	201	10/23/1999	6.9	6.8	10/23/1999	15	10
146	6/1/1999	8.3	6.6	6/1/1999	20	9	202	10/24/1999	7.3	6.8	10/24/1999	15	10
147	6/2/1999	6.4	6.6	6/2/1999	22	9	203	10/25/1999	8.8	6.8	10/25/1999	13	10
148	6/3/1999	6.1	6.7	6/3/1999	21	g _i	204	10/26/1999	6.8	6.8	10/26/1999	15	10
149	6/4/1999	2.0	6.7	6/4/1999	20	9	205	10/27/1999	6.8	5.8	10/27/1999	14	10
150	6/5/1999	6.5	6.7	6/5/1999	18	ÿ	206	10/28/1999	6.9	6.8	10/28/1999	14	10
151	6/7/1999	7.2	6.7	6/7/1999	18	9	207	10/29/1999	6.6	6.8	10/29/1999	13	10
152	6/8/1999	6.3	6.7	6/8/1999	22	ğ	208	10/30/1999	6.8	6.8	10/30/1999	13	10
153	6/9/1999	6.7	6.7	6/8/1999	23	9	209	11/1/1999	8.9	5.8	11/1/1999	14	10
154	6/10/1999	6.2	6.7	6/10/1999	22	ğ	210	11/2/1999	5.5	6.6	11/2/1999	15	10
155	6/11/1999	6.6	6.7	6/11/1999	21		211	11/3/1999	6.3	6.8	11/3/1999	14	10
156	6/15/1999	6.1	6.7	6/15/1999	20	ä	212	11/4/1999	6.8	6.8	11/4/1999	13	10
	6/16/1999	7.0	6.7	6/16/1999	21	g .	213	11/5/1999	6.7	6.8	11/5/1999	13	10
157		6.9	6.7	8/27/1999	21	ä	214	11/8/1999	6.7	6.8	11/6/1999	13	10
158	8/27/1999 9/6/1999	6.3	6.7	9/6/1999	23	9		11/8/1999	8.7	0.0 6.8	11/8/1999	11	10
159	9/7/1999	6.0	8.7	9/7/1999	24	9	215		6.4	6.8	11/9/1999	12	10
160	9/8/1999	7.3	6.7	9/8/1999	22	ģ	216	11/9/1999		6.8	11/10/1999	13	10
161				9/9/1999	23	9	217	11/10/1999	6.5			13	10
162	9/9/1999	6.7	6.7 6.7	9/9/1999	22	9	218	11/11/1999	6.7 6.5	6.8 8.8	11/11/1999 11/12/1999	12	10
163	9/10/1999	8.8	6.7 6.7	9/14/1999	20	9	219	11/12/1999			11/15/1999	11	10
164	9/14/1999	6.1			20	9	220	11/15/1999	8.8	6.8			10
165	9/15/1999	6.8	5.7	9/15/1999 9/16/1999		8	221	11/16/1999	6.2	6.5	11/16/1999	12 12	
166	9/16/1999	6.1	6.7		22	9	222	11/17/1999	6.7	6.8	11/17/1999	12	10 10
167	9/17/1999	6.5	6.7	9/17/1999	21	₩	223	11/18/1999	6.6	6.8	11/18/1999	10	30

	i	Berkeley E	S Effluent pH &	Temp Data from 1/1/199	9 to 1/31/2	2002		E	Berkeley E	S Effluent pH	& Temp Data from 1/1/19	79 to 1/31/20	102
224	11/19/1999	8.8	6.8	11/19/1999	11	10	260	2/3/2000	6.6	7.0	2/3/2000	6	11
225	11/22/1999	7.0	6.8	11/22/1999	13	10	281	2/4/2000	6.3	7.0	2/4/2000	8	51
226	11/23/1999	6.3	6.8	11/23/1999	13	10	282	2/5/2000	5.4	7.0	2/5/2000	7	11
227	11/27/1999	6.1	6.8	11/27/1999	13	10		2/6/2000	6.2	7.0	2/6/2000	ż	11
228	11/28/1999	6.7	6.8	11/28/1999	12	10	283		7.4	7.0	2/7/2000	6	11
229	11/29/1999	6.2	6.8	11/29/1999	12	10	284	2/7/2000 2/8/2000	8.7	7.0	2/8/2000	7	11
230	11/30/1999	6.1	6.8	11/30/1999	11	10	285 286	2/9/2000	7.1	7.0	2/9/2000	6	11
231	12/1/1999	7.4	6.8	12/1/1999	8	10		2/10/2000	7.2	7.0	2/10/2000	7	12
232	12/2/1999	7.2	8.8	12/2/1999	10	10	287	2/11/2000	8.3	7.0	2/11/2000	7	11
232	12/3/1999	7.2	6.9	12/3/1999	9	10	288	2/12/2000	6.5	7.0	2/12/2000	9	11
234	12/4/1999	7.0	6.9	12/4/1999	10	10	289	2/13/2000	8.8	7.0	2/13/2000	8	11
235	12/5/1999	6.8	6.9	12/5/1999	10	10	290	2/14/2000	7.4	7.0	2/14/2000	7	11
235	12/6/1999	6.9	6.9	12/6/1999	12	10	291	2/15/2000	6.6	7.0	2/15/2000	'n	11
237	12/7/1999	6.4	6.9	12/7/1999	10	10	292	2/16/2000	7.1	7.0	2/16/2000	7	11
238	12/8/1999	6.7	6.9	12/8/1999	9	10	293	2/17/2000	7.3	7.0	2/17/2000	6	11
239	12/9/1999	6.3	6.9	12/9/1999	10	10	294 295	2/18/2000	8.0	7.0	2/18/2000	7	11
240	12/10/1999	7.1	6.9	12/10/1999	11	10	296	2/19/2000	7.2	7.0	2/19/2000	ģ	11
241	12/11/1999	6.6	6.9	12/11/1999	11	10	297	2/20/2000	7.2	7.0	2/20/2000	7	11
242	12/12/1999	7.2	6.9	12/12/1999	11	13	298	2/21/2000	7.4	7.0	2/21/2000	7	11
243	12/13/1999	7.8	6.9	12/13/1999	10	11	299	2/22/2000	6.7	7.0	2/22/2000	8.	11
244	12/14/1999	5.0	5.9	12/14/1999	10	11	300	2/23/2000	6.8	7.0	2/23/2000	8	11
245	12/15/1999	6.3	6.9	12/15/1999	11	11	301	2/24/2000	7.5	7.0	2/24/2000	8	11
246	12/16/1999	6.5	6.9	12/16/1999	11	11	302	2/25/2000	7.4	7.0	2/25/2000	9	11
247	12/17/1999	7.4	6.9	12/17/1999	11	11	303	2/26/2000	7.3	7.0	2/26/2000	10	11
248	12/18/1999	7.9	69	12/18/1999	9	11	304	2/27/2000	8.1	7.0	2/27/2000	11	12
249	12/19/1999	8.6	6.9	12/19/1999	9	11	305	2/28/2000	6.4	7.0	2/28/2000	9	12
250	12/20/1999	8.9	6.9	12/20/1999	8	11	306	3/1/2000	6.7	7.0	3/1/2000	10	12
251	12/21/1999	5.2	6.9	12/21/1999	10	11	307	3/2/2000	7.1	7.0	3/2/2000	10	12
252	12/22/1999	6.6	6.9	12/22/1999	9	11	308	3/3/2000	7.3	7.0	3/3/2000	9	12
253	12/23/1999	7.1	6.9	12/23/1999	8	11	309	3/4/2000	7.8	7.0	3/4/2000	9	12
254	12/24/1999	8.5	6.9	12/24/1999	7	11	310	3/5/2000	8.6	7.0	3/5/2000	8	12
255	12/25/1999	7.3	6.9	12/25/1999	.7	11	311	3/6/2000	8.7	7.0	3/6/2000	8	12
256	1/4/2000	7.0	6.9	1/4/2000	10	11	312	3/7/2000	6.5	7.0	3/7/2000	10	12
257	1/5/2000	6.3	6.9	1/5/2000	11	11	313	3/8/2000	6.6	7.0	3/8/2000	10	12
258	1/6/2000	6.5	6.9	1/6/2000	9	11	314	3/9/2000	6.9	7.0	3/9/2000	10	12
. 259	1/7/2000	9.8	6.9	1/7/2000	\$ 9	11 11	315	3/10/2000	7.3	7.0	3/10/2000	11	12
260	1/8/2000	6.8	6.9	1/8/2000	10	11	316	3/11/2000	7.3	7.0	3/11/2000	13	12
261	1/9/2000	7.3	6.9	1/9/2000		11	317	3/12/2000	8.7	7.0	3/12/2000	13	12
262	1/10/2000	6.5	6.9	1/10/2009 1/11/2000	11 9	11	318	3/13/2000	7.1	7.0	3/13/2000	7	12
253	1/11/2000	6.0	6.9 6.9	1/12/2000	8	11	319	3/14/2000	6.6	7.0	3/14/2000	11	12
264	1/12/2000	6.8 6.8	6.9	1/13/2000	9	11	320	3/15/2000	5.9	7.0	3/15/2000	10 11	12 12
265 266	1/13/2000	7,5	6.9	1/14/2000	ő	17	321	3/16/2000	6.9	7.1	3/16/2000 3/17/2000	12	12
267	1/15/2000	7.2	6.9	1/15/2000	4	11	322	3/17/2000	7.0 6.7	7.1 7.1	3/18/2000	10	12
268	1/16/2000	8.5	6.9	1/16/2000	7	11	323	3/18/2000	6.5	7.3	3/19/2000	10	12
269	1/17/2000	7.9	6.9	1/17/2000	7	11	324	3/19/2000 3/20/2000	7.3	7.1	3/20/2000	11	12
270	1/18/2000	7.6	6.9	1/18/2000	á	11	325 326	3/21/2000	6.0	7.1	3/21/2000	11	12
271	1/19/2000	6.6	6.9	1/19/2000	7	11	327	3/22/2000	6.3	7.1	3/22/2000	11	12
272	1/21/2000	5.6	6.9	1/21/2000	6	11	328	3/23/2000	6.5	7.1	3/23/2000	11	12
273	1/22/2000	6.7	6.9	1/22/2000	4	11	329	3/24/2000	6.7	7.1	3/24/2000	11	12
274	1/23/2000	7.4	7.0	1/23/2000	6	11	330	3/25/2000	7.6	7.1	3/25/2000	12	12
275	1/24/2000	8.6	7.0	1/24/2000	5	11	331	3/26/2000	7.5	7.5	3/26/2000	12	12
276	1/25/2000	7.4	7.0	1/25/2000	5	11	332	3/27/2000	7.4	7.1	3/27/2000	11	12
277	1/31/2000	6.4	7.0	1/31/2000	6	11	333	3/28/2000	6.1	7.1	3/28/2000	12	12
278	2/1/2000	6.2	7.0	2/1/2000	6	11	334	3/29/2000	6.3	7.1	3/29/2000	12	12
279	2/2/2000	6.4	7.0	2/2/2000	6	11	335	3/30/2000	7.4	7.1	3/30/2000	12	12

Berkeley Ets Effluent pH & Temp Data from 1/1/1999 to 1/31/2002						Berkeley ES Effluent pH & Temp Data from 1/1/1999 to 1/31/2002								
336	3/31/2000	7.4	7.1	3/31/2000	11	12	39	net.	5/26/2000	8.3	7.2	5/26/2000	20	14
337	4/1/2000	7.4	7.1	4/1/2000	12	12	.au 39		5/27/2000	7.2	7.2	5/27/2000	19	14
338	4/2/2000	8.2	7,1	4/2/2000	14	12	39		5/28/2000	8.7	7.2	5/28/2000	16	14
339	4/3/2000	7.0	7.1	4/3/2060	15	12	39		5/29/2000	6.8	7.2	5/29/2000	18	14
340	4/4/2000	6.8	7.1	4/4/2000	14	12	39		5/30/2000	5.7	7.2	5/30/2000	17	14
341	4/5/2000	7.8	7.1	4/5/2000	13	12			5/31/2000	7.4	7.2	5/31/2000	17	14
342	4/6/2000	6.6	7.1	4/8/2000	14	12	39 39		6/1/2000	6.5	7.2	6/1/2000	18	14
343	4/7/2000	7.1	7.1	4/7/2000	13	12				6.9	7.2	6/2/2000	22	14
344	4/8/2000	7.4	7.1	4/8/2000	14	12	39		6/2/2000	7.0	7.2	6/3/2000	21	14
345	4/9/2000	6.9	7.1	4/9/2000	12	12	40		6/3/2000 6/4/2000	8.5	7,2	6/4/2000	20	14
346	4/10/2000	6.8	7.1	4/10/2000	13	12	40			8.6	7.2	8/5/2000	18	14
347	4/11/2000	7.2	7.1	4/11/2000	14	13	40		6/5/2000 6/6/2000	6.3	7.2	6/6/2000	19	14
348	4/12/2000	8.7	7.5	4/12/2000	13	13	40		8/7/2000	7.4	7.2	6/7/2000	19	14
349	4/13/2000	7.4	7.1	4/13/2000	12	13	40		6/8/2000	6.4	7.2	6/8/2000	21	14
350	4/14/2000	7.2	7.1	4/14/2000	12	13		35	6/9/2000	8.6	7.2	6/9/2000	19	14
351	4/15/2000	7.1	7.1	4/15/2000	15	13	4(06	6/10/2000	7.4	7.2	6/10/2000	20	14
352	4/16/2000	7.0	7.1	4/16/2000	15	13		0 <i>9</i> 08	6/11/2000	8.3	7,2	6/11/2000	21	14
353	4/17/2000	7.1	7.1	4/17/2000	14	13		09	6/12/2000	8.8	7.2	6/12/2000	22	14
354	4/18/2000	6.1	7.1	4/18/2000	14	13		10	6/13/2000	5.6	7.2	6/13/2000	21	14
355	4/19/2000	6.3	7.1	4/19/2000	14	13		11	6/14/2000	6.8	7.2	6/14/2000	21	34
356	4/20/2000	7.2	7.1	4/20/2000	13	13		12	6/15/2000	7.4	7.2	6/15/2000	21	14
357	4/21/2000	7.4	7.1	4/21/2000	14	13		13	6/16/2000	6.3	7.2	6/16/2000	20	14
358	4/22/2000	7.0	7.1	4/22/2000	14	13		14	6/17/2000	7.1	7.2	6/17/2000	21	14
359	4/23/2000	7.4	7.1	4/23/2000	14	13		15	6/18/2000	6.7	7.2	6/18/2000	22	14
360	4/24/2000	8.4	7.1	4/24/2000	14	13		16	6/19/2000	7.1	7.2	6/19/2000	21	14
361	4/25/2000	6.1	7.1	4/25/2000	14	13		17	6/20/2000	7.3	7.2	6/20/2000	21	14
362	4/26/2000	5.4	7.1	4/28/2000	13	13		18	6/21/2000	8.2	7.2	6/21/2000	21	14
363	4/27/2000	6.5	7.1	4/27/2000	13	13		19	5/22/2000	7.4	7.2	6/22/2000	22	14
354	4/28/2000	7.3	7.1	4/28/2000	13	13		20	6/23/2000	7.4	7.2	6/23/2000	20	14
365	4/29/2000	8.6	7.1	4/29/2000	1.3	13		21	6/24/2000	7.6	7.2	8/24/2000	21	14
366	4/30/2000	8.5	7.1	4/30/2000	13	13		22	6/28/2000	6.3	7.2	6/28/2000	22	15
367	5/1/2000	6.1	7.1	5/1/2000	14	13	4	23	6/29/2000	6.6	7.2	6/29/2000	22	15
368	5/2/2000	7.2	7.1	5/2/2000	16	13		24	6/30/2000	6.9	7.2	6/30/2000	22	15
369	5/3/2000	6.9	7.3	5/3/2000	16	13		25	7/1/2000	8.3	7.2	7/1/2000	20	15
370	5/4/2000	8.0	7.1	5/4/2000	15	13	4	26	7/2/2000	5.7	7.2	7/2/2000	20	15
371	5/5/2000	7.5	7.1	5/5/2000	15	13	4	27	7/3/2000	6.5	7.2	7/3/2000	21	15
372	5/6/2000	7.3	7.4	5/6/2000	17	13		28	7/4/2000	8.8	7.2	7/4/2000	21	15
373	5/7/2000	7.7	7.1	5/7/2000	17	13		29	7/5/2000	6.9	7.2	7/5/2000	22	15
374	5/8/2000	8.3	7.1	5/8/2000	17	13		30	7/6/2000	8.7	7.2	7/6/2000	21	15
375	5/9/2000	5.2	7.2	5/9/2000	19	13		31	7/21/2000	6.2	7.2	7/21/2000	20	15
375	5/10/2000	6.1	7.2	5/10/2000	20 19	13 13		32	7/24/2000	5.8	7.2	7/24/2000	20	15
377	5/11/2000	8.8	7.2	5/11/2000	18	13	4	33	7/26/2000	9.0	7.2	7/26/2000	20	15
378	5/12/2006	8.9	7.2	5/12/2000	19	13		34	7/29/2000	6.0	7.2	7/29/2000	21	15
379	5/13/2000	7.8	7.2	5/13/2000 5/14/2000	19	13		35	7/30/2000	7.1	7.3	7/30/2000	22	15 15
380	5/14/2000	8.8	7.2		18	13		36	7/31/2000	6.4	7.3	7/31/2000	22	15
381	5/15/2000	8.3	7.2	5/15/2000 5/16/2000	19	13		37	8/3/2000	6.3	7.3	8/3/2000	22	15
382	5/16/2000	6.4	7.2 7.2	5/17/2000	20	13		38	8/4/2000	6.3	7.3	8/4/2000	22	15
383	5/17/2000	6.4		5/18/2000	20	13		39	8/5/2000	6.2	7.3	8/9/2000	22	15
384	5/18/2000	6.7	7.2 7.2	5/19/2000	19	13		40	8/6/2000	8.3	7.3	8/6/2000	22	15
385	5/19/2000	7.9	7.2	5/20/2000	19	13		41	8/14/2000	7.0	7.3	8/14/2000	20	15
386	5/20/2000	6.8	7.2	5/21/2000	18	13		42	8/19/2000	6.2	7.3	8/19/2000	20	15
387	5/21/2000	7.1	7.2	5/22/2000	19	13		43	9/1/2000	6.7	7.3	9/1/2000	22	15
388	5/22/2000	6.0	7.2	5/23/2000	19	13		44	9/2/2000	6.5	7.3	9/2/2000	22	15
389	5/23/2000	6.6	7.2	5/24/2000	20	14		45	9/3/2000	7.0	7.3	9/3/2000	22	15
390	5/24/2000	6.9 7.2	7.2 7.2	5/25/2000	20	14		46	9/4/2000	6.8	7.3	9/4/2000	22	15
391	5/25/2000	7.2	5-2	SHZ5HZ000	614	~**	4	47	9/5/2000	6.3	7.3	9/5/2000	21	15

Berkeley Eb Effluent pH & Temp Data from 1/1/1999 to 1/31/2002

Berkeley ES Effluent pH & Temp Data from 1/1/1999 to 1/31/2002

448	9/8/2000	6.7	7.3	9/8/2000	20	15	504	12/7/2000	7.3	7.4	12/7/2000	10	16
449	9/9/2000	6.8	7.3	9/9/2000	20	15	505	12/8/2000	7.4	7.4	12/8/2000	10	17
450	9/11/2000	8.6	7.3	9/11/2000	21	15	506	12/9/2000	7.3	7.4	12/9/2000	6	17
451	9/12/2000	6.0	7.3	9/12/2000	23	15	507	12/11/2000	7.2	7.4	12/11/2000	7	17
	9/13/2000	7.4	7.3	9/13/2000	22	15	508	12/12/2000	7.2	7.4	12/12/2000	11	17
452	9/14/2000	6.9	7.3	9/14/2000	23	15	509	12/13/2000	7.5	7.4	12/13/2000	6	17
453	9/15/2000	7.0	7.3	9/15/2000	21	15	510	12/14/2000	7.2	7.4	12/14/2000	10	17
454		6.8	7.3	9/16/2000	18	15	511	12/15/2000	7.2	7.4	12/15/2000	9	17
455	9/15/2000		7.3	9/26/2000	19	15	512	12/16/2000	7.3	7.4	12/16/2000	รา	17
456	9/26/2000	6.0 6.6	7.3	9/27/2000	18	15	513	12/17/2000	6.9	7.4	12/17/2000	12	17
457	9/27/2000		7.3	9/28/2000	18	15	514	12/18/2000	6.3	7.4	12/18/2000	10	17
458	9/28/2000	7.3	7.3	9/29/2000	16	15		12/19/2000	7.1	7.4	12/19/2000	12	17
459	9/29/2000	8.0		9/30/2000	15	15	515		7.0	7.4	12/20/2000	10	17
460	9/30/2000	8.6	7.3	10/1/2000	16	15	516	12/20/2000	7.5	7.4	1/2/2001	9	17
461	10/1/2000	8.9	7.3	10/2/2000	20	15	517	1/2/2001	7.1	7.4	1/3/2001	6	17
462	10/2/2000	8.4	7.3	10/3/2000	20	15	518	1/3/2001	7.1	7.4	1/4/2001	7	17
463	10/3/2000	7.9	7.3	10/4/2000	18	16	519	1/4/2001		7.4 7.4	1/5/2001	, , , , , , , , , , , , , , , , , , ,	17
484	10/4/2000	8.3	7.3	10/5/2000	19	16	520	1/5/2001	7.2		1/8/2001	*	17
465	10/5/2000	8.0	7.3		20	16	521	1/8/2001	7.5	7.4	1/9/2001	é	17
466	10/5/2000	7.9	7.3	10/6/2000	16	16	522	1/9/2001	7.3	7.4	1/10/2001	8	17
467	10/10/2000	7.5	7.3	10/10/2000	18	16	523	1/10/2001	7.1	7.4 7.4	1/11/2001	7	17
468	10/11/2000	6.8	7.3	10/11/2000	14	16	524	1/11/2001	7.7		1/12/2001	ź	17
469	10/12/2000	8.8	7.3	10/12/2000	15	16	525	1/12/2001	7.8	7.4	1/16/2001	8	17
470	10/13/2000	7.9	7.3	10/13/2000	15	16	526	1/16/2001	7.5	7,4	1/17/2001	7	17
471	10/16/2000	7.6	7.3	19/16/2000	19	16	527	1/17/2001	7.6	7.4	1/18/2001	ģ	17
472	10/17/2000	7.2	7.3	10/17/2000	18	16	528	1/18/2001	7.2	7.4		11	17
473	10/18/2000	7.3	7.3	10/18/2000	15	16	529	1/19/2001	7.1	7.4	1/19/2001 1/20/2001	11	17
474	10/19/2000	7.5	7.3	10/19/2000	18	16	530	1/20/2001	6.4	7.4	1/21/2001	9	17
475	10/20/2000	7.5	7.3	10/20/2000		16	531	1/21/2001	6.5	7.4	1/22/2001	10	17
476	10/23/2000	7.5	7.3	10/23/2000	15 18	16	532	1/22/2001	7.1	7.4	1/23/2001	8	17
477	10/24/2000	7.4	7.3	10/24/2000	18	16	533	1/23/2001	7.3	7.4	1/24/2001	8	17
478	10/25/2000	7.4	7.3	10/25/2000			534	1/24/2001	7.3	7.4		7	17
479	10/26/2000	7.2	7.3	10/26/2000	17	16	535	1/25/2001	7.2	7.4	1/25/2001	5	17
480	10/27/2000	7.6	7.3	10/27/2000	18	16 16	536	1/26/2001	7.1	7.4	1/26/2001	8	17
481	10/30/2000	7.4	7.3	10/30/2000	15	16	537	1/27/2001	6.9	7.4	1/27/2001	7	17
482	10/31/2000	7.1	7.3	10/31/2000	17	16 16	538	1/28/2001	6.7	7.4	1/28/2001		17
483	11/1/2000	7,4	7.3	11/1/2000	16		539	1/29/2001	7.4	7.4	1/29/2001	8	17
484	11/2/2000	7.3	7.3	11/2/2000	16	16 16	540	1/30/2001	7.2	7.4	1/30/2001	9	17
485	11/3/2000	7.3	7.3	11/3/2000	16	16	541	1/31/2001	7.2	7.4	1/31/2001		17
486	11/6/2000	7.3	73	11/6/2000	13	16	542	2/1/2001	9.6	7.4	2/1/2001	10 11	17
487	11/8/2000	7.6	7.3	11/8/2000	16	16	543	2/2/2001	6.7	7.4	2/2/2001 2/5/2001	10	17
488	11/9/2000	7.3	7.3	11/9/2000	16 15	16	544	2/5/2001	7.4	7.4	2/6/2001	9	17
489	11/10/2000	7.3	7.3	11/10/2000	16	16	545	2/6/2001	7.1	7.4	2/7/2001	9	17
490	11/13/2000	7.3	7.3	11/13/2000		16	546	2/7/2001	7.4	7.4		9	17
491	11/14/2000	7.7	7.3	11/14/2000	16	16	547	2/8/2001	7.3	7.4	2/8/2001	11	17
492	11/15/2000	7.6	7.4	11/15/2000	15 14	16	548	2/9/2001	7.3	7.4	2/9/2001	11	18
493	11/16/2000	7.4	7.4	11/16/2000	15	16	549	2/12/2001	7.5	7.4	2/12/2001	10	18
494	11/17/2000	7.5	7.4	11/17/2000	11	16	550	2/13/2001	7.3	7.4 7.5	2/13/2001 2/14/2001	11	18
495	11/18/2000	7.7	T.4	11/18/2000	10	16	551	2/14/2001	7.1		2/15/2001	10	18
496	11/20/2000	7.6	7.4	11/20/2000	13	16	552	2/15/2001	7.0	7.5 7.5	2/15/2001	11	18
497	11/21/2000	7.3	7.4	11/21/2000		16	553	2/16/2001	7.1			11	18
498	11/22/2000	7.3	7.4	11/22/2000	11	16	554	2/17/2001	7.0	7.5	2/17/2001		
499	11/29/2000	7.1	7.4	11/29/2000	13	16	555	2/18/2001	6.8	7.5	2/18/2001	10 5	18 18
500	12/1/2000	7.2	7.4	12/1/2000	10	16	555	2/19/2001	6.0	7.5	2/19/2001		
501	12/4/2000	7.4	7.4	12/4/2000	6		557	2/20/2001	7.6	7.5	2/20/2001	10	18
502	12/5/2000	7.4	7.4	12/5/2000	11	16 16	558	2/21/2001	7.2	7.5	2/21/2001	10 5	18
503	12/6/2000	7.1	7.4	12/6/2000	10	10	559	2/22/2001	6.9	7.5	2/22/2001	5	16

560	2/24/2001	6.5	7.5	2/24/2001	7	18	616	5/1/2001	7.6	7.7	5/1/2001	17
561	2/25/2001	7.0	7.5	2/25/2001	7	18	517	5/2/2001	7.7	7.7	5/2/2001	18
562	2/26/2001	7.3	7.5	2/26/2001	9	18	618	5/3/2001	7.7	7.7	5/3/2001	18
563	2/27/2001	7.3	7.5	2/27/2001	10	18	619	5/4/2001	7.4	7.7	5/4/2001	19
	2/28/2001	7.1	7.5	2/28/2001	10	18	620°	5/7/2001	7.8	7.7	5/7/2001	16
564			7.5	3/1/2001	7	18	621	5/8/2001	7.6	7.7	5/8/2001	19
565	3/1/2001	6.7		3/2/2001	7	18	622	5/9/2001	7.5	7.7	5/9/2001	17
566	3/2/2001	7.3	7.5		á	18		5/10/2001	7.5	7.7	5/10/2001	17
567	3/3/2001	6.5	7.5	3/3/2001	9	18	623		7.4	7.7	5/11/2001	18
568	3/4/2001	6.6	7.5	3/4/2001			624	5/11/2001		7.7	5/14/2001	17
569	3/5/2001	7.4	7.5	3/5/2001	11	18	625	5/14/2001	7.9			18
570	3/8/2001	7.2	7.5	3/6/2001	9	18	626	5/15/2001	7.5	7.7	5/15/2001	
571	3/7/2001	7.4	7.5	3/7/2001	10	18	627	5/16/2001	7.7	7.7	5/16/2001	18
572	3/8/2001	7.3	7.5	3/9/2001	9	18	628	5/17/2001	7.7	7.8	5/17/2001	17
573	3/9/2001	7.2	7.5	3/9/2001	10	18	629	5/16/2001	7.4	7.8	5/18/2001	16
574	3/12/2001	7.8	7.5	3/12/2001	9	18	630	5/19/2001	7.5	7.8	5/19/2001	17
575	3/13/2001	7.5	7.5	3/13/2001	13	18	631	5/20/2001	6.7	7.8	5/20/2001	16
576	3/14/2001	7.5	7.5	3/14/2001	13	18	632	5/21/2001	7.9	7.8	5/21/2001	18
	3/15/2001	7.3	7.5	3/15/2001	11	18	633	5/22/2001	7.0	7.8	5/22/2001	†9
577	3/16/2001	7.0	7.5	3/16/2001	10	18	534	5/23/2001	6.4	7.8	5/23/2001	15
578		7.0	7.5	3/17/2001	11	18	635	5/24/2001	7.5	7.8	5/24/2001	19
579	3/17/2001		7.5	3/18/2001	10	18	636	5/25/2001	7.8	7.8	5/25/2001	19
580	3/18/2001	7.0		3/19/2001	6	t8	637	5/26/2001	6.3	7.6	5/26/2001	16
581	3/19/2001	6.9	7.5	3/20/2001	11	18		5/27/2001	6.4	7.8	5/27/2001	17
582	3/20/2001	7.2	7.5		10	18	638		7.0	7.8	5/28/2001	17
583	3/21/2001	7.2	7.5	3/21/2001	10	18	639	5/28/2001		7.8	5/29/2001	19
584	3/22/2001	8.4	7.5	3/22/2001		18	640	5/29/2001	7.8		5/30/2001	19
585	3/23/2001	7.3	7.5	3/23/2001	12		641	5/30/2001	7.6	7.8		17
586	3/24/2001	6.9	7.5	3/24/2001	13	18	642	5/31/2001	7.6	7.8	5/31/2001	18
587	3/25/2001	7.0	7.5	3/25/2001	13	18	643	5/1/2001	7.2	7.8	6/1/2001	
588	3/26/2001	7.6	7.5	3/26/2001	11	18	644	6/2/2001	6.8	7.9	8/2/2001	18
589	3/27/2001	7.3	7.6	3/27/2001	51	18	645	5/3/2001	7.0	7.9	6/3/2001	18
590	3/28/2001	7.4	7.6	3/28/2001	10	18	646	8/4/2001	6.5	7.9	6/4/2001	16
591	3/29/2001	7.4	7.6	3/29/2001	10	18	647	6/5/2001	7.4	7.9	6/5/2001	20
592	3/30/2001	7.0	7.6	3/30/2001	11	18	648	6/6/2001	7.6	7.9	6/6/2001	20
593	3/31/2001	6.3	7.6	3/31/2001	12	18	649	6/7/2001	6.7	7.9	6/7/2001	19
594	4/1/2001	7.0	7.6	4/1/2001	12	18	650	6/8/2001	7.4	7.9	6/8/2001	21
	4/2/2001	7.3	7.6	4/2/2001	12	18	651	8/9/2001	7.2	7.9	6/9/2001	21
595	4/3/2001	7.2	7.6	4/3/2001	12	18	652	6/10/2001	7.2	7.9	6/10/2001	21
596			7.6	4/4/2001	11	16	653	6/11/2001	7.1	7.9	6/11/2001	18
597	4/4/2001	7.3	7.6	4/5/2001	13	18		6/12/2001	7.2	7.9	6/12/2001	22
598	4/5/2001	7,3		4/8/2001	14	18	654		7.7	7.9	6/13/2001	23
599	4/6/2001	7.2	7.6	4/7/2001	15	19	855	6/13/2001	7.6	7.9	6/14/2001	21
600	4/7/2001	7.2	7.6	4/8/2001	14	19	656	6/14/2001		8.0	6/15/2001	21
601	4/8/2001	7.0	7.6		12	19	657	6/15/2001	7.5	8.0	5/16/2001	21
602	4/9/2001	6.8	7.6	4/9/2001		19	658	6/16/2001	7.4		8/17/2001	20
603	4/10/2001	7.3	7.6	4/10/2001	16 14	19	659	6/17/2001	8.0	8.0	6/25/2001	19
604	4/11/2001	6.9	7.6	4/11/2001			660	6/25/2001	7.3	8.0	9/5/2001	21
605	4/12/2001	7.2	7.6	4/12/2001	15	19	661	9/5/2001	7.6	8.0		22
606	4/14/2001	7.6	7.6	4/14/2001	11	19	662	9/9/2001	7.3	8.0	9/6/2001	21
607	4/15/2001	6.8	7.6	4/15/2001	12	19	663	9/7/2001	7.3	8.0	9/7/2001	
608	4/16/2001	7.2	7.6	4/16/2001	13	19	664	9/10/2001	7.5	8.0	9/10/2001	21
609	4/17/2001	6.9	7.6	4/17/2001	12	19	665	9/11/2001	7.7	8.8	9/11/2001	20
610	4/23/2001	7.5	7.6	4/23/2001	17	19	686	9/12/2001	8.3	8.1	9/12/2001	21
611	4/24/2001	7.5	7.6	4/24/2001	17	19	667	9/13/2001	7.0	8.1	9/13/2001	21
	4/25/2001	7.0	7.6	4/25/2001	12	19	668	9/14/2001	7.4	8.2	9/14/2001	21
612	4/26/2001	6.9	7.6	4/26/2001	11	19	669	9/17/2001	7.7	8.2	9/17/2001	17
613		7.1	7.6	4/27/2001	12	19	670	9/18/2001	7.8	8.2	9/18/2001	20
614	4/27/2001	7.9	7.0	4/30/2001	15	19	671	9/19/2001	7.8	8.2	9/19/2001	20
515	4/30/2001	1.25	2.1	- The special and the first	- • •		0.3	SH FAREWAY E	7 .44	~~		

Page 3 of 4

672	9/20/2001	7.6	8.3	9/20/2001	25	20
673	9/21/2001	7.5	8.3	9/21/2001	22	20
674	9/24/2001	7.2	8.3	9/24/2001	20	20
675	9/25/2001	7.4	8.3	9/25/2001	21	20
676	9/26/2001	7.3	8.3	9/26/2001	18	20
677	9/27/2001	7.4	8.3	9/27/2001	17	20
678	9/28/2001	7.2	8.3	9/28/2001	17	20
679	10/1/2001	7.9	8.3	10/1/2001	18	20
680	10/2/2001	7.6	831	10/2/2001	201	20
681	10/3/2001	7.7	8.3	10/3/2001	19	20
682	10/4/2001	7.5	8.3	10/4/2001	20	21
683	10/5/2001	7.7	8.3	10/5/2001	20	21
684	10/8/2001	7.8	8.3	10/8/2001	18	21
685	10/9/2001	7.6	8.3	10/9/2001	18	21
686	10/10/2001	7.8	8.4	10/10/2001	16	21
687	10/11/2001	7.6	8.4	10/11/2001	16	21
688	10/12/2001	7.5	8.4	10/12/2001	19	21
689	10/15/2001	7.6	8.4	10/15/2001	17	21
690	10/16/2001	7.2	8.4	10/16/2001	19	21
691	10/17/2001	7.5	8.4	10/17/2001	18	21
692	10/18/2001	7.2	8.5	10/18/2001	17	21
693	10/19/2001	7.0	8.5	10/19/2001	14	21
694	10/22/2001	7.1	8.5	10/22/2001	17	21
695	10/23/2001	6.9	8.5	10/23/2001	19	21
696	10/24/2001	6.9	8.5	10/24/2001	18	21
697	10/25/2001	7.1	8.5	10/25/2001	18	21
698	10/26/2001	7.0	8.5	10/26/2001	17	21
699	10/29/2001	7.5	8.5	10/29/2001	16	21
700	10/30/2001	7.1	8.5	10/30/2001	16	21
701	10/31/2001	7.0	8.5	10/31/2001	17	21
702	11/1/2001	7.1	8.5	11/1/2001	17	21
703	11/2/2001	7.2	8.6	11/2/2001	18	21
704	11/5/2001	7.2	8.6	11/5/2001	16	21
705	11/6/2001	7.3	8.6	11/6/2001	17	21
706	11/7/2001	7.4	8.6	11/7/2001	12	21
707	11/8/2001	7.1	8.5	11/8/2001	17	21
708	11/9/2001	7.1	8.6	11/9/2001	15	21
709	11/12/2001	7.3	8.6	11/12/2001	15	21 21
710	11/13/2001	7.0	8.6	11/13/2001	14	21
711	11/14/2001	6.9	8.6	11/14/2001	15 16	21
712	11/15/2001	6.7	8.6	11/15/2001	16	21
713	11/16/2001	7.1	8.6	11/16/2001	16	21
714	11/19/2001	7.3	8.6		16	21
715	11/20/2001	5.9	8.6 8.6	11/20/2001 11/26/2001	14	21
715	11/28/2001	7.0		11/27/2001	16	21
717	11/27/2001	6.6	8.7 8.7	11/28/2001	17	21
718	11/28/2001	7.1	8.7 8.7	11/29/2001	17	21
719	11/29/2001	7.4 7.3	8.7	11/30/2001	18	22
720	11/30/2001	7.4	8.7	12/3/2001	17	22
721	12/3/2001	7.5	8.7	12/4/2001	17	22
722	12/5/2001	7.3	8.7	12/5/2001	15	22
723	12/6/2001	7.3	8.7	12/6/2001	15	22
724	12/6/2001	7.1	8.7	12/7/2001	15	22
725 726	12/9/2001	7.1	8.7	12/9/2001	13	22
720	12/01/2001	7.5	8.8	12/10/2001	12	22

728	12/11/2001	7.0	8.8	12/11/2001	15	22
729	12/12/2001	7.3	9.8	12/12/2001	15	22
730	12/13/2001	6.9	8.8	12/13/2001	16	22
731	12/14/2001	8.8	8.8	12/14/2001	16	22
732	12/17/2001	6.9	8.8	12/17/2001	13	22
733	12/18/2001	6.8	8.8	12/18/2001	17	22
734	12/19/2001	6.9	8.8	12/19/2001	15	22
735	12/20/2001	6.9	8.8	12/20/2001	12	22
736	12/21/2001	6.6	8.8	12/21/2001	11	22
737	1/7/2002	6.9	8.8	1/7/2002	11	22
738	1/8/2002	6.8	8.9	1/8/2002	9	22
739	1/9/2002	6.8	8.9	1/9/2002	9	22
740	1/10/2002	8.7	8.9	1/10/2002	10	22
741	1/11/2002	6.8	8.9	1/11/2002	11	22
742	1/14/2002	7.1	8.9	1/14/2002	10	22
743	1/15/2002	7.2	8.9	1/15/2002	12	22
744	1/16/2002	8.9	8.9	1/16/2002	11	22
745	1/17/2002	5.9	8.9	1/17/2002	12	22
746	1/18/2002	6.7	8.9	1/18/2002	9	22
747	1/22/2002	7.0	8.9	1/22/2002	10	22
748	1/23/2002	7.0	9.0	1/23/2002	9	22
749	1/24/2002	7.0	9,0	1/24/2002	12	23
750	1/25/2002	6.8	9.0	1/25/2002	10	23
751	1/26/2002	7.1	9.0	1/26/2002	19	23
752	1/28/2002	7.1	9.0	1/28/2002	11	23
753	1/29/2002	7.0	9.0	1/29/2002	13	23
754	1/30/2002	7.2	9.6	1/30/2002	14	23
755	1/31/2002	6.8	9.8	1/31/2002	13	24

Topographic maps and Black and white aerial photography for year 1990+- are from the United States Department of the Interior, United States Geological Survey. Color aerial photography aquired 2002 is from Virginia Base Mapping Program, Virginia Geographic Information Network.

Shaded topographic maps are from TOPO! ©2006 National Geographic http://www.national.geographic.com/topo

All other map products are from the Commonwealth of Virginia Department of Game and Inland Fisheries.

map assembled 2012-08-22 16:46:52 (qa/qc June 12, 2012 14:14 - tn=419319 dist=3218 I)

| DGIF | Credits | Disclaimer | Contact shirl.dressler@dgif.virginia.gov | Please view our privacy policy | © Copyright; 1998-2011 Commonwealth of Virginia Department of Game and Inland Fisheries

VaFWIS Initial Project Assessment Report Compiled on 8/22/2012, 4:50:53

Help

Known or likely to occur within a 2 mile radius around point 38.1197222222222 77.6183333333333 in 177 Spotsylvania County, VA

View Map of Site Location

383 Known or Likely Species ordered by Status Concern for Conservation (displaying first 20) (14 species with Status* or Tier I** or Tier II**)

BOVA Code	Status*	The state of the s	Common Name	Scientific Name	Confirmed	Database(s)
060003	FESE	II	Wedgemussel, dwarf	Alasmidonta heterodon	один од на при од на од на На од на	Habitat
040129	ST	I	Sandpiper, upland	Bartramia longicauda		BOVA
040293	ST	I	Shrike, loggerhead	Lanius ludovicianus		BOVA
040093	FSST	II	Eagle, bald	Haliaeetus leucocephalus		BOVA
040292	ST		Shrike, migrant loggerhead	Lanius ludovicianus migrans		BOVA
100248	FS	Ι	Fritillary, regal	Speyeria idalia idalia		BOVA
030063	CC	III	Turtle, spotted	Clemmys guttata		BOVA
010077		I	Shiner, bridle	Notropis bifrenatus	Yes	BOVA,Habitat,SppObs
040225		I	Sapsucker, yellow- bellied	Sphyrapicus varius		BOVA
040319		Tues	Warbler, black- throated green	Dendroica virens		BOVA
040052		II	Duck, American black	Anas rubripes		BOVA
040105		II	Rail, king	Rallus elegans		BOVA
040320		II	Warbler, cerulean	Dendroica cerulea		BOVA
040266		II	Wren, winter	Troglodytes troglodytes		BOVA
030068		III	Turtle, eastern box	Terrapene carolina carolina		BOVA .
040094		III	Harrier, northern	Circus cyaneus		BOVA
040034		III	Heron, tricolored	Egretta tricolor		BOVA
040036		III	Night-heron, yellow- crowned	Nyctanassa violacea violacea		BOVA
040204		III	Owl, barn	Tyto alba pratincola		BOVA
040181		III	Tern, common	Sterna hirundo		BOVA

To view All 383 species <u>View 383</u>

^{*} FE=Federal Endangered; FT=Federal Threatened; SE=State Endangered; ST=State Threatened; FC=Federal Candidate; FS=Federal Species of Concern; CC=Collection Concern

```
8/28/2012 12:58:35 PM
            Berkeley Elementary School WWTP
Facility = Berkele
Chemical = Ammonia
Chronic averaging period = 30
WLAa = 14.9
WLAC
Q.L. = .2
\# samples/mo. = 1
\# samples/wk. = 1
Summary of Statistics:
# observations = 1
Expected Value = 9
Variance = 29.16
C.V. = 0.6
97th percentile daily values = 21.9007
97th percentile 4 day average = 14.9741
97th percentile 30 day average= 10.8544
\# < Q.L. = 0
             = BPJ Assumptions, type 2 data
Model used
A limit is needed based on Acute Toxicity
Maximum Daily Limit = 14.9
Average Weekly limit = 14.9
Average Monthly LImit = 14.9
The data are:
                           Units of Measurement is mg/L.
```


COMMONWEALTH of VIRGINIA

E. Anne Peterson, M.D., M.P.H. COMMISSIONER

Department of Health Office of Water Programs ENVIRONMENTAL ENGINEERING FIELD OFFICE 400 S. MAIN ST. - 2ND FLOOR CULPEPER, VA 22701 PHONE: 540-829-7340 FAX: 540-829-7337

MEMORANDUM

DATE:

SEP 28 200

TO:

Dennis Treacy, Director

Department of Environmental Quality, Water Regional Office, Woodbridge

FROM:

Robert J. VanLier, P.E. Engineering Field Representative State Health Department, Division of Wastewater Engineering

SUBJECT:

Spotsylvania County - Sewerage - Berkeley Elementary School

Please find enclosed the Certificate to Operate (CTO) for the above mentioned facility. Please process in our usual fashion.

PLEASE STAMP THIS PAGE ONLY

Northern Va. Region Dept. of Env. Quality

COMMONWEALTH of VIRGINIA

E. Anne Peterson, M.D., M.P.H. COMMISSIONER

Department of Health
Office of Water Programs

ENVIRONMENTAL ENGINEERING FIELD OFFICE 400 S. MAIN ST. - 2ND FLOOR CULPEPER, VA 22701

PHONE: 540-829-7340 FAX: 540-829-7337

October 4, 2000

SUBJECT:

Spotsylvania County

Sewerage -

Berkeley Elementary School

Mr. James A. Meyers Spotsylvania County School Board 6717 Smith Station Road Spotsylvania, VA 22553

Dear Mr. Meyers:

Enclosed is the Certificate to Operate (CTO) for the Berkeley Elementary School.

This action is in accordance with Section 2.06 of the Virginia Sewerage Regulations.

If you have any questions regarding the CTO, please feel free to contact this office.

Sincerely,

Robert J. VanLier, P.E.

Engineering Field Representative

RJV/jdc

CC:

DEQ - Water Regional Office, Woodbridge Spotsylvania County Health Department

OWP - Central

o:\jc\dist16\s\berkeleyCTOltr

COMMONWEALTH OF VIRGINIA

E. Anne Peterson, M.D., M.P.H. COMMISSIONER

Department of Health Office of Water Programs

ENVIRONMENTAL ENGINEERING FIELD OFFICE 400 S. MAIN ST. - 2ND FLOOR CULPEPER, VA 22701 PHONE: 540-829-7340 FAX: 540-829-7337

Date

Date

CERTIFICATE TO OPERATE

_			
6 B	TETE	202	
W 5	AA S	BELL	

Spotsylvania County School Board

Facility/System Name:

Berkeley Elementary School STW

VPDES Permit Number:

VA0061301

Description of the Facility/System:

This project involves the installation of an extended aeration basin, clarifier, digester, and blowers. The septic tank is to be retained. The existing sand filters are to be removed from the treatment process. No change in flow is involved.

Authorization to Operate:

By letter dated September 28, 2000, David J. Saunders. P.E. indicated that the treatment works has been installed as per the approved plans and specifications for this facility. A CTO inspection was performed by VDH. The owner is authorized to operate these facilities with the condition that an operation and maintenance manual will be submitted to the VDH for approval.

9/28/00

CONCURRENCE

Robert J. VanLier, P.E., Engineering Field Representative

State Department of Health

ISSUANCE

Mr. Dennis Treacy, Director

Department of Environmental Quality

RJV/idc

o:\ic\dist16\s\berkeleyCTO

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

James S. Gilmore, III Governor

John Paul Woodley, Jr. Secretary of Natural Resources Northern Virginia Regional Office 13901 Crown Court Woodbridge, VA 22193-1453 (703) 583-3800 fax (703) 583-3801 · http://www.deq.state.va.us

Dennis H. Treacy Director

Gregory L. Clayton Regional Director

April 29, 1999

Dr. James A. Meyer, Ed.D. Assistant Superintendent of Schools Spotsylvania County School Board 7565 Courthouse Drive Spotsylvania, VA 22553

RE:

Plans and Specifications for the Berkeley Elementary and J.J. Wright Middle Schools Wastewater Treatment Facilities

Dear Dr. Meyer:

The plans and specifications for the above-referenced project are approved by the Department of Environmental Quality. This action is in accordance with a letter report from the Virginia Department of Health **conditionally approving** this project. A copy is enclosed for your information. You are expected to comply with the condition that the Operation and Maintenance Manual, Sludge Management Plan, and the Sand Filter Closure Plan be submitted to the Department of Health and the Department of Environmental Quality for review and approval prior to the issuance of a final Certificate to Operate.

This document constitutes your Certificate to Construct as required by Section 2.04.04 of the Virginia Sewerage Regulations.

As the owner of these facilities you will be required to comply with the following sections of the Virginia Sewerage Regulations: Section 2.05 (Statement Required Upon Completion of Construction) and Section 2.06 (Issuance of the Certificate to Operate).

The Department of Environmental Quality approval does not relieve the owner of the responsibility of operating the facility in a consistent manner to meet the facility performance requirements or the responsibility for the correction of design and/or operation deficiencies. Nor does this approval relieve the owner from meeting all other applicable laws and regulations.

If you have any questions, or if in the next thirty (30) days you or your engineers would like to pick up and retain our copy of the approved plans and specifications, please contact Anna Tuthill at (703) 583-3837.

Sincerely

- Dennis H. Treacy

Director

Enclosures

cc: E.R. Sutherland, Clifford and Associates

Doug Crooks, Superintendent of Wastewater, Spotsylvania County

Cal Sawyer, P.E., VDH-Division of Wastewater Engineering

J. S. Desai, P.E., VDH-Culpeper

File An Agency of the Natural Resources Secretariat

COMMONWEALTH of VIRGINIA

Northern VA. Region Dept. of Env. Quality

Department of Health
P O BOX 2448
RICHMOND, VA 23218
APR 0 7 1999

TDD 1-800-828-1120

SUBJECT:

Spotsylvania County

Sewerage:

Spotsylvania County Schools

Berkeley Elementary and

J. J. Wright Middle Schools WTF

Department of Environmental Quality Water Regional Office 13901 Crown Court Woodbridge, Virginia 22193

Attention:

Mr. Gregory L. Clayton

Regional Director

Dear Mr. Clayton:

The Preliminary Engineering Report (PER), plans and specifications, for the upgrade (nitrification) of the Wastewater Treatment Facilities for the Berkeley Elementary and J. J. Wright Middle Schools, Spotsylvania County School Board as prepared by Clifford and Associates have been received by this Department. The PER includes pages 1 through 16 entitled Wastewater Treatment Upgrade and is dated June 1998. The plans include sheets 1 through 6 entitled Spotsylvania County Public Schools, Wastewater Treatment Facilities Improvement and are dated October 1998.

This project has been designed for average flows of .0075 and .0053 MGD for J. J. Wright and Berkeley schools respectively or equivalent school populations of 553 and 362 students.

The proposed facilities have been designed to comply with the existing effluent limits of 24 mg/l BOD, 24 mg/l TSS and new, May 30, 2001, standards for ammonia for Berkeley of 1.7 mg/l and for J. J. Wright of 1.1 mg/l. The project consists of adding extended aeration systems for nitrification and removal of the existing sand filters.

Although the design flow at the J. J. Wright School was projected as 7,500 gpd, the PER lists the permitted flow at 15,000 gpd which should be adjusted accordingly to reflect the actual design capacity.

Department of Environmental Quality Page Two

SUBJECT:

Spotsylvania County

Sewerage:

Spotsylvania County Schools

Berkeley Elementary and

J. J. Wright Middle Schools WTF

The design consultant also investigated the alternative of pumping to a POTW; but, because of cost, selected the on-site treatment and discharge option.

The evaluation review of these plans and specifications has been confined to technical requirements and design criteria as stipulated in the Commonwealth of Virginia Sewerage Regulations. The Operation and Maintenance Manual should include a narrative description of the processes, analyses and calculations necessary to monitor performance, the expected ranges of results, and recommendations for adjustments if those expectations are not met. This guidance is important because the effluent from the septic tank is considered to be equivalent to that of a primary clarifier. The relative concentrations of COD and ammonia are marginally suited for nitrification.

In accordance with the State Water Control Law, Code of Virginia 1950, as amended Title 62.1, Chapter 3.1, Article 4, Section 62.1-44.1.9, Paragraph 3, this letter report is to advise that the previously mentioned PER, plans and specifications are technically adequate and are recommended for approval with the condition that the Operation and Maintenance Manual, Sludge Management Plan, and the Sand Filter Closure Plan be submitted to the Department of Health and Department of Environmental Quality for review and approval prior to the issuance of a final Certificate to Operate.

Issuance of a construction permit or any further action or decision is a matter for your office.

The Department will forward one copy of the PER, plans and specifications with State Health Department stickers to the Department of Environmental Quality's Water Regional Office in Woodbridge and one copy to the owner.

Notification of the Department of Environmental Quality's action should be transmitted to Dr. James Meyer, Spotsylvania County Schools, 7565 Courthouse Drive, Spotsylvania, Virginia 22553; Mr. E. R. Sutherland, Clifford and Associates, 150 C. Olde Greenwich Drive, Fredericksburg, Virginia 22401-4098; the Local Building Code Official; Mr. J. S. Desai, Virginia Department of Health, Culpeper Field Office, 400 Main Street, Culpeper, Virginia 22701; and this Office.

Department of Environmental Quality Page Three

SUBJECT:

Spotsylvania County

Sewerage:

Spotsylvania County Schools

Berkeley Elementary and

J. J. Wright Middle Schools WTF

Enclosed is a copy of the letters of transmittal dated September 15, 1998 and November 5, 1998.

By direction of the Acting State Health Commissioner.

Sincerely,

CM Jawy

C. M. Sawyer, P.E., Director

Division of Wastewater Engineering

c: Dr. James Meyer-Spotsylvania County Schools Mr. E. R. Sutherland-Clifford and Associates Mr. J. S. Desai-Culpeper Field Office Spotsylvania County Health Department

```
Facility = Berkeley ES
Chemical = Ammonia as N
Chronic averaging period = 30
WLAa = 2.92
WLAc =
Q.L. = 0.2
# samples/mo. = 1
# samples/wk. = 1
```

Summary of Statistics:

```
# observations = 1

Expected Value = 10

Variance = 36

C.V. = 0.6

97th percentile daily values = 24.3341

97th percentile 4 day average = 16.6379

97th percentile 30 day average = 12.0605

# < Q.L. = 0

Model used = BPJ Assumptions, type 2 data
```

A limit is needed based on Acute Toxicity
Maximum Daily Limit = 2.92
Average Weekly limit = 2.92
Average Monthly Llmit = 2.92

The data are:

10

Berkeley Elementary School FACILITY:

VA0060301 VPDES #:

TIER INFORMATION: 1 Ammonia Calculation - Acute Ammonia Criteria for Freshwater Temperature

1.0000000 1.0000000 8.30 11 FPH=1 if 8.0<=pH<=9.0 FT=10⁴((.03)(20-T) DATA ENTRY:->

0.2600000 11 11 FPH=((1+10^(7.4-pH))/1.25 if 6.5<=pH<8.0 Acute Criteria Concentration=.52/FT/FPH/2 FPH=

11

Total Acute Ammonia Criteria = Calculated un-ionized ammonia criteria divided by fraction of un-ionized Ammonia Conversion from un-ionized to Total Ammonia can be calculated by using the following formulas:

0.0734374 9.4009576 Fraction= pKa⊪ Where: Fraction of un-ionized ammonia = 1/(10^(pKa-pH) +1) where: pKa = 0.09018 + (2729.92/273.2 + temperature 'C,)

3.5404315 mg/l Fotal Acute Ammonia Criteria = Calculated un-ionized Ammonia Criteria divided by fraction of un-ionized Ammonia 0.073437376 = Total Ammonia = 0.2600000 / Fotal Acute Ammonia Criteria =

Total Ammonia is then converted to Ammonia-Nitrogen.

Ħ 2.9173156 MG/L 3.5404315 X .824 TOTAL ACUTE N-NH3

2.92

Ammonia Calculation - Chronic Ammonia Criteria for Freshwater

TIER INFORMATION: 1 8.30 Temperature DATA ENTRY:->

1.0000000 11 FT=10^((.03)(20-T) FPH Ratio

1.0000000

 $\frac{1}{2}$

11

FPH=((1+10^(7.4-pH))/1.25 if 6.5<=pH<8.0

FPH=1 if 8.0<=pH<=9.0

13.5

Š Ratio = 20.25 x (10^(7.7-pH))/(1+(10^(7.4-pH)) if 6.5<=pH<7.7 = 13.5

Ratio = 13.5 if 7.7<=pH<=9.0

Chronic Criteria Concentration=.8/FT/FPH/RATIO =

0.0592593

0.806935956 mg/l Conversion from un-ionized to Total Ammonia can be calculated by using the following formulas: Total Chronic Ammonia Criteria = Calculated un-ionized ammonia criteria divided by fraction of un-ionized Ammonia Where: Fraction of un-ionized ammonia = 1/(10^(pKa-pH) +1)

where: pKa = 0.09018 + (2729.92/273.2 + temperature 'C)

Total Chronic Ammonia Criteria = Calculated un-ionized Ammonia Criteria divided by fraction of un-ionized Ammonia

Total Chronic Ammonia Criteria = 0.0592593 / 0.0734374 = Total Ammonia = 0.8

Total Ammonia is then converted to Ammonia-Nitrogen. **TOTAL CHRONIC N-NH3**

0.8069360 X .824

0.6649152 MG/L

11

99.0

Revised 12/03/97: (i:wdbr1\common\permits\mode\newamm)

```
Facility = Berkeley ES
Chemical = Total Residual Chlorine
Chronic averaging period = 4
WLAa = 0.019
WLAc =
Q.L. = 0.1
# samples/mo. = 28
# samples/wk. = 7
```

Summary of Statistics:

```
# observations = 1

Expected Value = 20

Variance = 144

C.V. = 0.6

97th percentile daily values = 48.6683

97th percentile 4 day average = 33.2758

97th percentile 30 day average = 24.1210

# < Q.L. = 0

Model used = BPJ Assumptions, type 2 data
```

A limit is needed based on Acute Toxicity
Maximum Daily Limit = 0.019
Average Weekly limit = 1.16034369282885E-02
Average Monthly Llmit = 9.47327018453872E-03

The data are:

20

STREAM ASSIMILATION ANALYSIS

ε'				
Stream:	Mot Pirci	Date:	1-5-77	and the second s
		Drainage	Area: 10.5	m; 2
Discharge	: Berkeley School STOTSYLVANIA	Critical	Discharge:_	-Olmgd
Discharge Conditions	BODS = 24 my/8 D.C 5.5 my/8	(#1)	(#2)	(#3)
	0.6. 3.3 //	ن .		30
	Stream temperature	30"	30 7.6	7.6
. (C-turn tion D ()	• • •	6,8	6.8
Input:	n O Discharge		.14	.12
R. Kanstrund	V		0	٥
Background {	K _n (nitrogenous)	1.0	l	1
, 4 ,,	K _n (nitrogenous)	0.00535	.01	,00
Discharge Data			3	3
(NODu (discharge	0	0	ų.
· · · · · · · · · · · · · · · · · · ·	\		.00535	,015
	(Flow, mgd (stream)	0	23,6	8,3
Input:	BOD ₅ (stream)		0	0
Stream Pata	NOD _u (stream)	, 1.	.5	2,0
THEAM BALL	1		1	<u> </u>
	$(p \land (-1) \land (p \land 2))$		5,0 5,24	5.0
	D.O. (stream)	.6.8	5, 27	6.3
•			1, 24	1,4
	\triangle D.O. from allowable	. 1 . 1		
Output:			10 1535	.019
	Flow (combined)	23,6	8.3	5,
Data @ either	₹ BUD5 decay @ t ··································		0	0
		00	.03	.0.
critical point	1 p.o. a + ("A" indicates)	. 5,24	6, 3	6.4
or end of	(Critical D.O.)			
segment (see Not	(Critical D.O.)			
	•			
	#1 - Dry Pitch condition (for Imile)			
	(#2 - Mix with Mot Run traville north tob	(,5m;)		
	The - Travel to To River, add stretch flows & Test	(A: A mi")	(=,00A) (Z.O)	mi)

Note: At the end of each segment, if critical D.O. has not been reached, the next stream segment should be analyzed. The parameter values determined 0 time = t become the new "stream" data and new flows introduced to the stream (eg: tributaries, STP discharges, stretch flows) become the new "discharge" data. [K1, Kn and K2 must be adjusted as necessary]

by: Ed. Miller Roland Brier

Attachment 13

Public Notice - Environmental Permit

PURPOSE OF NOTICE: To seek public comment on a draft permit from the Department of Environmental Quality that will allow the release of treated wastewater into a water body in Spotsylvania County, Virginia.

PUBLIC COMMENT PERIOD: XXX, 2012 to 5:00 p.m. on XXX, 2012

PERMIT NAME: Virginia Pollutant Discharge Elimination System Permit – Wastewater issued by DEQ, under the authority of the State Water Control Board

APPLICANT NAME, ADDRESS AND PERMIT NUMBER: Spotsylvania County School Board, 8020 River Stone Drive, Fredericksburg, VA 22407, VA0061301

PROJECT DESCRIPTION: Spotsylvania County School Board has applied for a reissuance of a permit for the public Berkeley Elementary School. The applicant proposes to release treated sewage wastewaters from public school at a rate of 0.0053 million gallons per day into a water body. The sludge will be disposed by hauling it to the Massaponax Wastewater Treatment Plant for final disposal. The facility proposes to release treated sewage in the unnamed tributary to Mat River Spotsylvania County in the York River watershed. A watershed is the land area drained by a river and its incoming streams. The permit will limit the following pollutants to amounts that protect water quality: pH, BOD5, Total Residual Chlorine, Total Suspended Solids, Ammonia, and Dissolved Oxygen.

HOW TO COMMENT AND/OR REQUEST A PUBLIC HEARING: DEQ accepts comments and requests for public hearing by e-mail, fax or postal mail. All comments and requests must be in writing and be received by DEQ during the comment period. Submittals must include the names, mailing addresses and telephone numbers of the commenter/requester and of all persons represented by the commenter/requester. A request for public hearing must also include: 1) The reason why a public hearing is requested. 2) A brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requestor, including how and to what extent such interest would be directly and adversely affected by the permit. 3) Specific references, where possible, to terms and conditions of the permit with suggested revisions. A public hearing may be held, including another comment period, if public response is significant, based on individual requests for a public hearing, and there are substantial, disputed issues relevant to the permit.

CONTACT FOR PUBLIC COMMENTS, DOCUMENT REQUESTS AND ADDITIONAL INFORMATION: The public may review the documents at the DEQ-Northern Regional Office by appointment, or may request electronic copies of the draft permit and fact sheet.

Name: Joan C. Crowther

Address: DEQ-Northern Regional Office, 13901 Crown Court, Woodbridge, VA 22193 Phone: (703) 583-3925 E-mail: joan.crowther@deq.virginia.gov Fax: (703) 583-3821

State "Transmittal Checklist" to Assist in Targeting Municipal and Industrial Individual NPDES Draft Permits for Review

Part I. State Draft Permit Submission Checklist

In accordance with the MOA established between the Commonwealth of Virginia and the United States Environmental Protection Agency, Region III, the Commonwealth submits the following draft National Pollutant Discharge Elimination System (NPDES) permit for Agency review and concurrence.

Facility Name: NPDES Permit Number: Permit Writer Name: Date:	Berkeley Elementar VA0061301 Joan C. Crowther August 31, 2012	ry School			
		T., 3., 4., 1. []	\	Г У Л	
Major []	Minor [X]	Industrial []	Municipal	[X]	
I.A. Draft Permit Package Submi	ttal Includes:		Ye	s No	N/A
1. Permit Application?			X		
2. Complete Draft Permit (for rene- information)?	wal or first time perm	nit – entire permit, including boilerplat	e X		
3. Copy of Public Notice?			Х		
4. Complete Fact Sheet?			X		
5. A Priority Pollutant Screening to	determine paramete	rs of concern?	X		
6. A Reasonable Potential analysis	showing calculated V	WQBELs?	X		
7. Dissolved Oxygen calculations?			X		
8. Whole Effluent Toxicity Test su	mmary and analysis?				X
9. Permit Rating Sheet for new or r	nodified industrial fa	cilities?			X
Land and the state of the state			1		1
I.B. Permit/Facility Characteristi	es		Ye	es No	N/A
1. Is this a new, or currently unperr				X	
2. Are all permissible outfalls (inclustorm water) from the facility pr		er overflow points, non-process water authorized in the permit?	and X		
3. Does the fact sheet or permit con	ntain a description of	the wastewater treatment process?	Х		
4. Does the review of PCS/DMR d compliance with the existing per		t 3 years indicate significant non-	Х		
		ics since the last permit was developed	1?	X	
6. Does the permit allow the discharge		WARRANT CONTRACTOR CON		X	
	ovide a description of	f the receiving water body(s) to which	the	r	
8. Does the facility discharge to a 3	03(d) listed water?			X	·
a. Has a TMDL been developed	and approved by EP	A for the impaired water?			X
b. Does the record indicate that most likely be developed wit		nent is on the State priority list and wil	1		X
c. Does the facility discharge a page 303(d) listed water?					X
<u> </u>	or are any limits less	stringent, than those in the current per	nit?	X	
10. Does the permit authorize discha				X	

I.B. Permit/Facility Characteristics – cont.	Yes	No	N/A
11. Has the facility substantially enlarged or altered its operation or substantially increased its flow or production?		X	
12. Are there any production-based, technology-based effluent limits in the permit?		X	
13. Do any water quality-based effluent limit calculations differ from the State's standard policies or procedures?		X	
14. Are any WQBELs based on an interpretation of narrative criteria?		X	
15. Does the permit incorporate any variances or other exceptions to the State's standards or regulations?		X	
16. Does the permit contain a compliance schedule for any limit or condition?		X	
17. Is there a potential impact to endangered/threatened species or their habitat by the facility's discharge(s)?		X	
18. Have impacts from the discharge(s) at downstream potable water supplies been evaluated?	X	-	
19. Is there any indication that there is significant public interest in the permit action proposed for this facility?		X	
20. Have previous permit, application, and fact sheet been examined?	X		

Part II. NPDES Draft Permit Checklist

Region III NPDES Permit Quality Checklist – for POTWs (To be completed and included in the record <u>only</u> for POTWs)

II.A. Permit Cover Page/Administration	Yes	No	N/A
1. Does the fact sheet or permit describe the physical location of the facility, including latitude and longitude (not necessarily on permit cover page)?	X		10 mm
2. Does the permit contain specific authorization-to-discharge information (from where to where, by whom)?	Х		

II.B. Effluent Limits – General Elements	Yes	No	N/A
1. Does the fact sheet describe the basis of final limits in the permit (e.g., that a comparison of technology and water quality-based limits was performed, and the most stringent limit selected)?	X		
2. Does the fact sheet discuss whether "antibacksliding" provisions were met for any limits that are less stringent than those in the previous NPDES permit?	X		

II.C. Technology-Based Effluent Limits (POTWs)	Yes	No	N/A
1. Does the permit contain numeric limits for <u>ALL</u> of the following: BOD (or alternative, e.g., CBOD, COD, TOC), TSS, and pH?	X		
2. Does the permit require at least 85% removal for BOD (or BOD alternative) and TSS (or 65% for equivalent to secondary) consistent with 40 CFR Part 133?	X		
a. If no, does the record indicate that application of WQBELs, or some other means, results in more stringent requirements than 85% removal or that an exception consistent with 40 CFR 133.103 has been approved?			X
3. Are technology-based permit limits expressed in the appropriate units of measure (e.g., concentration, mass, SU)?	X		
4. Are permit limits for BOD and TSS expressed in terms of both long term (e.g., average monthly) and short term (e.g., average weekly) limits?	X		
5. Are any concentration limitations in the permit less stringent than the secondary treatment requirements (30 mg/l BOD5 and TSS for a 30-day average and 45 mg/l BOD5 and TSS for a 7-day average)?		X	
a. If yes, does the record provide a justification (e.g., waste stabilization pond, trickling filter, etc.) for the alternate limitations?			X

II.D. Water Quality-Based Effluent Limits	Yes	No	N/A
1. Does the permit include appropriate limitations consistent with 40 CFR 122.44(d) covering State narrative and numeric criteria for water quality?	X		
2. Does the fact sheet indicate that any WQBELs were derived from a completed and EPA approved TMDL?			X
3. Does the fact sheet provide effluent characteristics for each outfall?	X		
4. Does the fact sheet document that a "reasonable potential" evaluation was performed?	X		
a. If yes, does the fact sheet indicate that the "reasonable potential" evaluation was performed in accordance with the State's approved procedures?	X		
b. Does the fact sheet describe the basis for allowing or disallowing in-stream dilution or a mixing zone?	X		
c. Does the fact sheet present WLA calculation procedures for all pollutants that were found to have "reasonable potential"?	X		
d. Does the fact sheet indicate that the "reasonable potential" and WLA calculations accounted for contributions from upstream sources (i.e., do calculations include ambient/background concentrations)?		X	
e. Does the permit contain numeric effluent limits for all pollutants for which "reasonable potential" was determined?	X		

II.D. Water Quality-Based Effluent L	imits — cont.	Ye	s No	N/A	
5. Are all final WQBELs in the permit opposited in the fact sheet?	consistent with the justification and/or documentation	X			
	ng-term AND short-term effluent limits established?	X			
7. Are WQBELs expressed in the perm concentration)?	it using appropriate units of measure (e.g., mass,	X			
8. Does the record indicate that an "ant State's approved antidegradation po	degradation" review was performed in accordance wilicy?	th the X			
II.E. Monitoring and Reporting Requ		Ye	s No	N/A	
	al monitoring for all limited parameters and other	X			
a. If no, does the fact sheet indicate	that the facility applied for and was granted a monitor ecifically incorporate this waiver?	ing			
2. Does the permit identify the physical outfall?	location where monitoring is to be performed for each	h X			
3. Does the permit require at least annu	al influent monitoring for BOD (or BOD alternative) cable percent removal requirements?	and	· X		
4. Does the permit require testing for V			X		
II.F. Special Conditions			s No	N/A	
1. Does the permit include appropriate		X			
2. Does the permit include appropriate	storm water program requirements?			X	
II.F. Special Conditions – cont.		Ye	s No	N/A	
3. If the permit contains compliance so deadlines and requirements?	hedule(s), are they consistent with statutory and regula			X	
Are other special conditions (e.g., ar studies) consistent with CWA and N	nbient sampling, mixing studies, TIE/TRE, BMPs, sportsports regulations?	ecial X			
5. Does the permit allow/authorize discharge of sanitary sewage from points other than the POTW outfall(s) or CSO outfalls [i.e., Sanitary Sewer Overflows (SSOs) or treatment plant bypasses]?			Х		
	s from Combined Sewer Overflows (CSOs)?		X		
	ntation of the "Nine Minimum Controls"?			X	
	nent and implementation of a "Long Term Control Pla	in"?		X	
c. Does the permit require monitoring				X	
7. Does the permit include appropriate			X		
II.G. Standard Conditions		Ye	es No	N/A	
	122.41 standard conditions or the State equivalent (o	r X			
List of Standard Conditions – 40 CFI	R 122.41				
Duty to comply	1 , 5	ng Requirem	ents		
Duty to reapply	I	nned change	<u> </u>		
Need to halt or reduce activity	, ·	-	cipated noncompliance		
not a defense	1,10,11,0,11,0	nsfers			
Duty to mitigate	Signatory requirement Monitoring reports Bypass Compliance schedules				
*1					
Permit actions		Hour reportiner non-comp			
				- 1	
2. Does the permit contain the addition stringent conditions) for POTWs re	nal standard condition (or the State equivalent or more garding notification of new introduction of pollutants 2(b)]?	and	X		

Part III. Signature Page

Based on a review of the data and other information submitted by the permit applicant, and the draft permit and other administrative records generated by the Department/Division and/or made available to the Department/Division, the information provided on this checklist is accurate and complete, to the best of my knowledge.

Name	Joan C. Crowther	
Title	VRDES Permit Writer	
Signature	Jegwe	
Date	Åugust 31, 2012	